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Obtaining Fatty Acid Profiles from Soil Samples

This work focuses on the calculations performed on the peak areas obtained
by gas chromatography (GCY. All the steps of soil sampling, lipid extraction
and fractionation, derivatization, and capillary GC have been repeatedly re.
viewed, and will only be briefly mentioned (a bibliography of work done in

this laboratory is available at hitpi//cha.bio.utk.edu/director peerfull.himl, -

and an extensive bibliography of methods is provided by Dr. William
Christies group, Mylnefield Research Services Lid. at httpy/jwww.
lipidiibrary.co.uk/!it._surv,html).

Sampling is the most important step in sample analysis, and is often
delegated to the most junior member of the lab or to sjte specialists not
associated with the lipid Taboratory, such as a subsurface sediment drilling
crew. Besides sampling location, the sample’s consistency, integrity, and
appearance should be recorded, In order 1o obtain deep subsurface sam-
ples, the use of drilling equipment and drilling mud is usually required,
and methods have been deveioped to prevent and detect drilling mud con-~
tamination of samples (Griffin et al, 1997; Phelps et al, 1989},

Capillary GC with flame ionization detection (FID) is a powerful ana-
Ivtical method - simpler in operation, of greater linear range, and more
sensitive, reliable, and reproducible than most analytical instrumentation
available. The users’ manuals for the chromatograph and data system are
the primary references for their operation. If you won't read the manual,
you shouldn't touch the equipment. There are also many excellent reviews
of capillary chromatography of polar lipid fatty acids (PLFA} available {(for
example, Grob and Barry 1995),

Capillary GC-MSis a necessary adjunct to GC-FID for the identification
of fatty acid peaks (Christie 2003). Various chemical methods are also avajl-
able to help with specific identification problems such as sitver ion chyo-
matography to separate saturates, monounsaturates, and polyunsaturates
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{Momchilova and Nikoleva-Damyanova 2000}, and special derivatization
methods to determine the position and geometry of monounsaturation,
such as MS of dimethyldisulfide adducts (Nichols et al. 1986). MS of picol-
inyl esters provides more informative fragmentations than GC-MS of the
methyi ester {Christie et al. 1991; Harvey 1992},

This werk presupposes some knowledge of Microsoft Excel (Microsoft
Corp., Redmond, WA), which is used ta manipulate chromatographic re-
sults in many laboratories. The on-line help system is the basic reference
for Excel, such asitis. & novice user will benefit from one of the many intro-
ductory books available at a bookstore. Also assumed is some background
in the statistical procedures comumonly applied te PLEA data, including
analysis of variance {ANOVA) and factor analysis,

12.2
Transforming Fatty Acid Peak Areas
to Total Microbial Biomass

Gas chromatography provides a peak area proportional to the amount of the
compound in the sample responsible for the peak. A known concentration
of an internal standard, usually 19:0 or 21:0, is added io the sample befors
analysis (o allow calculation of absolute amounis {see Sect. 12.5 for the
naming of fatty acids). The equation used to calculate the total amount of
fatty acids in a sample is,

{sum AE\/A;?} » I8 % X

FA =
4

{12.1}

FA total picomoles of fatty acids per gram dry mass of sample {(pmol/g
dry mass)

sumdgy swn of the areas of all identified fatty acid peaks excluding the
internal standard

Arg area of the internal standard peak
IS concentration of internal standard used (50 pmoleful)
X volume of internal standard used to dilute the fatty acid methyl

esters (ul.)

4 mass of sample extracted (g soil dry mass). In some instances,
rather than grams dry mass as the divisor, it will be volume of
water {L), surface area in meters squared, or some other extensive
variable,
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Many analysts calculate the pmol/g dry mass for each fatty acid, then
add them together to get the total pmole/g dry mass. This is not good
practice, since the pmol/g dry mass for each fatty acid is not then of use in
further analysis, and the more complicated calculation makes mere work
and opportunities for error.

The total moles of membrane fatty acids is proportional to the total
microbial biomass, The constant of proportionality used in our laboratory
is 2.5 x 10* cells/pmol PLFA {Balkwill et al, 1988; White et a1, 1006 and
references therein). This conversion factorwas derived from measurements
on laboratory cultures, so the number of cells will be underestimated for
environments populated by smaller bacterial cells, such as oligotrophic
environments. :

Researchers who count cells, with automated cell counting instruments
or by microscopy, are often uncomfortable with measurements of viable
biomass expressed as moles of PLFA or grams dry mass of cells. In order
fo estimate cell counts from moles of PLFA requires knowledge of the
distribution of cell sizes in the sample and the amount of PLFA per cell for
different sizes, information which s not usually available, It makes more
sense fo transform cell counts o moles PLFA or from the latter to grams
dry weight of cells, since the cel] counting can provide the data on cell size
distribution,

For most sample sets, the biomass will not be normalily distributed, that
i5, a histogram of the biomass data will be skewed with a long tail toward
the higher biomasses. This can be tested for by using the standard [ test
for normality. Also, in most biomass data sets, the variance of hiomass
increases with the absolute value of the biomass. This violates the assump-
tions of parametric statistics, including ANOVA and factor analysis, and
lowers the power of any statistical test employed. These problems can be
solved by a log(X + A} transformation, where X is the mole percent of the
fatty acid, and A is a small constant. The small constant is added so that
zexo values give a veal solution when the log transform is applied. The
most common value used for A is one, which gives a value of zero for the
transform when X is zero, since log(0+ 1) = ¢, :

There are two approaches to proving the value of applying a log trans-
form to biomass data, the theoretical and the practical. The theoretical
explanation involyes the scaling of the forces affecting microbial biomass
{Magurran 1988) and the fractal structure of microbi alenvironments (Man-
delbrot 1982}, and is beyond the scope of this work, The practical reason
for the log transform is that it works; applying a log transformation to the
data is perfectly legitimate, and results in more significant differences on
statistical tests.
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12.3
Calculation and Interpretation of Community Structure

After the biomass, the next most important information to extract from
a PLFA profile is the community structure. But where the hiomass is a single
value for each sample with a straightforward interpretation, the commu-
nity siructure data is multivariate with many options in its interpretation,
A “standard” method for presenting community structure data, how to
create a custom method for community structure, and factor analysis wili
be presented.

12.3.1
Standard Community Structure Method

In the standard method for community structure analysis of PLFA Dro-
files, chemically related fatty acids are grouped as in Table 12.1. A PLFA
profile may contain, for example, from 18 to 92 fatty acids. The standard
community structure approach summarizes that in six variables, which are
just the sum of the mole percents of each of the fatty acid groups. The use
of a standard community structure analysis method allows comparison
between/among experiments.

Table 12.1. Groups ofchemically refated fatty acids used in the standard community structure
analysis

Group name Rule Examples Microbiota represented
Saturaies Saturated straight- 12:0,13:0, 140, Al organisms
chain falty acids 13:0, 16:0, 1720,
18:0
Monounsaturates Fatty acids with 14: w5, Proteobacteria
a single unsaturation  16:im7c,
plus cyclapropyls 16:1m7t,
18: 1 7¢
Mid-chain branched  Any mid-chain HiMe16:0, Actinomyeetes,
branched fatty acid 10Me18:0 sulfate-reducers
Terminally branched  Jso-and anti-iso- 1t4:0, 1340, Gram positive bacteria
branched saturated a15:0,116:0,
fatty acids H70,al7:0
Polyunsaturates Any farty acid with 18:2e6¢, Eukaryotes
more than one 18:3ex3c
nnsaturation
Branched unsaturates  Any branched 117 kew7c Anacrobes

maneunsatarate
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The standard community structure breakdown was originally devel-
oped on marine sediments, and has been successfully applied to migrobial
communities from many environments, including, for example, marine
macrofaunal burrows (Marinelli et al. 2002), a subsurface zere-valent iron
reactive barrier for bioremediation {Gu et al, 2002, marine gas hydrates
(Zhang et al. 2002), soils contaminated with jet fuel {Stephen et al. 19493,
and t0 a comparison of subsurface environments {Kieft et al. 1997).

12.3.2
Custom Community Structure Methods

When examination of the chromatograms or the mole percent table shows
differences with treatment, but no significant differences are found in the
standard community structure groups, some other way of grouping the fatty
acids may be more useful. For example, if samples differ in the proportions
of Cyancbacteria and Eukaryotic algae, it may be useful to separate the
polyunsaturates with 18 or fewer carbons characteristic of Cyanobacteria
(@ezanka et al. 2003) from those typical of Eukaryotic algae with 20 or
more carbons (Brwin 1973),

There are several methods for developing alternative community struc-
ture groups. The manual method uses the pattern recognition power of the
human eye, The PLFA chromatograms are printed on the same scale and
spread out on a large table, Similar-looking chromatograms are grouped
together and different-looking ones are placed in separate groups. While
very low-tech, this works remarkably well. This same approach can be ap-
plied to a mole percent table by printing it out, cutting out a strip for each
sample, and sorting the samples by similarity. Once the samples have been
sorted into similar groups, the fartty acids responsible are summed to form
new community structure groups.

Given access to statistical software, a triangular table of Pearson’s r
correlation coefficients is usually available as an sutput oplion, Visual
examination of this table will locate fatty acids with hi gh correlations, which
are then grouped together to form new community structure groups.

12.3.3
Factor Analysis

Factor apalysis includes several related methods, including principal-com-
ponents analysis, The virtue of this method is that it automatically con-
structs fatty acid groups reflecting the differences in comymunity structure,
rather than applying a preconception of fatty acid groups. The data deter-
mines the fatty acid groups, rather than the analyst. Factor loadings greater
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than 0.7 indicate fatty acids with “significant” effects on the results, The
factor scores are new variables that are linear combinations of the origi-
val values. These new variables can be submitted to statistical tests such
as ANOVA like any other variable. Examples of the application of factor
analysis to PLFA profiles include storage perturbation of soil microbial
communities (Haldeman et al, 1995; Brockman et al, 1997), soils at differ-
ent temperatures (Zogg et al. 1997), and soils from different ecosystems
{Myers et al, 2001).

The results of factor analysis are usually improved by applying the Jog(X +
1} transformation to the mole percent data before factor analysis. A rough
method to determine whether the mole percent data isnormally distributed
is to calculate the maximum, average, and the minimam not equal to zero
for each fatty acid. The formulas for these in Excel are “= max(b2.b45)”, “=
average(b2.b45)”, and “= min(if(b2.b45 = ¢, 100, b2.b451)”, where b2.has
is the range containing the data. The formula for min 0 is what Excel
terms an array formula; you have to hold down the Shift and Control keys
while you press Enter to enter the formula, If the difference between the
maximum and average is greater than the difference between the average
and the minimum ¢ for most of the fatty acids, then the data is not normally
distributed and the log(X + 1) transformation will probably improve results.

There are theoretical reasons to advocate the arcsin[square root(X})
transformation over the log(X+1) transformation, bus verylittle difference
is found in practice, and the fog(X + 1) is simpler to apply and explain.
Similarly, there are theoretical reasons to prefer factor analysis sersy stricto
over principal components analysis, and vice versa, which can, and have
been, argued for days to no conclusion. In practice, the two methods give
very similar resuits.

12.4

Calculation and Interpretation

of Metabolic Stress Biomarkers

The membrane of the bacterial cell handles all of its interactions with
its environument, and bacteria have many strategies to deal with stressful
environmental conditions, including modifying the fatty acids used in the
membrane, This is iHlustrated in Eq.(12.2), where S stands for the substrate

fatty acid and P for the product fatty acid induced by metabolic stress,
namely, a frans monounsaturate or cyclopropyl fatty acid.

5P
cis monounsaturate — frans monounsaturate {12.2}
¢s monounsaturate — cyclopropyl
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cyclopropyl fatty acids by prefix “Cy.” For example: 18:1w7¢ is 18 carbons
lorig with one double bond occurring at the 7th carbon atom from the w
end, and the unsaturation is in the cis conformation. Also, 16:0, ile:0, alo:0,
and br16:0 are all 16-carbon fatty acids, while 10Me16:9 and Cy17:0 both
contain a total of 17 carbons, not counting the carbon of the methyl ester
moiety.
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