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Abstract

The accumulation of toxic metals is a major concern at industrial and defense
related sites. Soil microbial community structures are known to change in the presence of
toxic metals with adaptation to pollutants. Herein we have used phospholipid fatty acid
(PLFA) biomarker characterization and viable bacterial counts to determine shifts in the
bacterial and microeukaryote biomass/communities in soils taken from a heavily
contaminated Superfund site located near Sault St. Marie, Upper Peninsula, MI.
Chromium (Cr“} at this site ranges from background levels (0-50 mg kg™) to ~200.000
mg kg'l. Linear and non-linear tachniéues were used to map changes in the microbial
communities correlating with Cr’* concentration. Although total biomass (from PLFA
and/or viable counts) showed no correlation with Cr'* concentration (P>0.03), relative
proportions of PLFA indicative of sulfate reducing bacteria peaked at 10° mg kg™ Cr*",
while PLFA indicative of environmental “stress” were positively associated with the
highest concentration of Cr’". The ordination of PLFA profiles together with sample
characteristics by principal component analysis further revealed associations between
Cr’* and PLFA. However, multi-linear regression of PLFA profiles to predict 5
highlighted the fact that the correlation was not linear (R* = 0.80). The association
between PLFA profile and Cr’* concentration was further investigated using artificial
neural networks (ANN), an artificial intelligence technique. A predictive (cross-
validated) association was found, including 11 hidden nodes. The neural network was a
highly accurate predictor for levels of Cr'* as low as 100 mg ke Furthermore, the ANN
prediction was observed to depend mostly on the concentrations of PLFA components

rather than other sample characteristics.
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INTRODUCTION

The release of toxic metal waste into the environment at defense-related and
industrial sites has resulted in widespread surface and groundwater contamination (12,
43). Unlike the majority of other toxicants, metal wastes are not biodegradable and
having entered the environment, their potential toxicity is controlled to a great extent by
geochemical and biological factors (48). Microbiological communities are of primary
importance in the bioremediation of metal contaminated soils as they represent a
malleable agent that is able to affect virtually all biogeochemical pathways.
Microorganisms can alter metal chemistry and mobility through reduction, oxidation.
accumulation and immobilization (2, 8, 32, and 49).

In some cases, a specific metal waste may have an imperceptible impact on the
total viable biomass of the natural population, while the community structure and
metabolic characteristics of the population may be drastically affected (48). Changes in
microbial population structure following metal contamination can be determined using a
wide range of techniques including ATP assays (4), select enzyme activity assays (7, 37),
phylogenetic analysis via the polymerase chain reaction and denaturing gradient gel
electrophoresis (PCR-DGGE: 28, 34), and phospholipid fatty acid analysis (3, 18, 41).
Of these, only PLFA currently provides a truly direct analysis, rendering it useful for real
time monitoring of the microbial population at contaminated sites. As constituents of all
eukaryote and bacterial cell membranes, PLFA provide a non-selective means to assay
changes in microbial communities in situ. Numerous studies have shown how PLFA
analysis can aid in determining the impact of environmental change, e.g. exposure to

hydrocarbons (13, 35) or metals (17, 18), on the microbial community structure.
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However, the information contained within community PLFA profiles is often extremely
complex, with typically 50-70 different PLF As detected in any sample from a single site.
Consequently, conclusions can best be drawn from such data using multivariate statistical
approaches. These approaches include principal components analysis (46), and/or
methods that account for non-linear associations among the lipid biomarkers, such as
artificial neural networks (1, 10, 38). The latter approach is particularly suitable for the
analysis of PLFA profiles because artificial neural networks (ANN) are learning tools
able to identify non-linear associations without requiring assumptions about the
underlying mechanisms (e.g. “learning. from experience", 23). Artificial neural networks
were originally developed to mimic nervous systems (21) and have since matured as a
statistical tool (11). Their application to environmental monitoring is enjoying increasing
popularity due to the development of multi-parametric multi-purpose biosensors (29 ).
The complex nature of biological systems is a consequence of its behavior being as much
a result of combined component behaviors as of the interaction between them (19). Asa
consequence, the distinction of signal from noise in biological associations is
fundamentally irreducible and is best achieved by following a machine learning approach
(5).

In this study we demonstrate the application of linear and non-linear statistical
techniques to map the respoﬁsc of the subsurface micro-eukaryote and bacterial
communities to chromium contamination at a heavily contaminated industrial Superfund
site located 1.5 miles west of Sault St. Marie, Upper Peninsula, MI. Chromium waste
exists in either of two oxidation states, Crtor Cr"™, of which Cr’" is both the less toxic,

and the only form detected in these samples. Surface samples (0-0.15 m depths) were
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extracted and analyzed for PLFA, direct and viable bacterial counts, Cr e K,P, Caand
Mg concentration and percent total organic carbon (TOC) and organic matter (TOM).
From the PLFA profiles, shifts in total biomass, community structure and physiological
status were quantified and compared to Cr concentration using principal components
analysis. The ANN was used to establish a predictive association with a sensitivity

analysis performed to quantify the contribution of individual PLFA.

MATERIALS AND METHODS

Site description and soil sampling. Samples were obtained from the Cannelton
industrial site located 1.5 miles west of Sault Ste. Marie, Upper Peninsula, MI, between
October 1997 and August 1998. This is a 75 acre property on the Saint Marie river front
that is contaminated with Cr and other heavy metals as the result of waste disposal from a
tannery (Northwestern Leather Company) that operated from approximately 1900-1958.
A map of the site showing sampling sites and a qualitative environmental interpretation is
presented in Figure | A. Chromium contamination at these sites has been shown to be
dominated by the relatively immobile Cr*™ (Figure 1B is a graphical representation of the
Cr’" distribution in the surface sediments at the Cannelton Tannery Superfund site).
Sampling sites were chosen to represent the range of Cr'* concentrations from the highest
contamination (~200,000 mé kg™") to background levels (0-50 mg kg"}, At each site,
samples were taken from 0-0.15 m depth and stored at 4°C for viable counts/ chemical
analyses or at -80°C for PLFA analysis. Samples were sent on dry ice overnight to the

laboratory for Subsaquant PLFA analysis.
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Metal Concentrations. Brietly, soil samples were extracted with nitric acid in
pressurized vessels (CEM Inc., Ontario, CA) heated in a microwave (22). This procedure
dissolves the more reactive fraction of the sample and leave behind the more resistant
silicate minerals. The extracted liquid was diluted and analyzed for total metal
concentrations using a Micromass™ Inductively Coupled Plasma-Mass Spectrometer
(ICP-MS, Micromass, UK) with a hexapole collision cell. Calibration standards for
analyses were prepared using distilled, deionized water and stock standards (J.T. Baker
Analyzed, Phillipsburg, NJ). Standards and sample dilutions were prepared under
identical solution conditions. All chemicals and reagents used were analytical metal

grade or better.

Determination of total carbon. The total carbon present in soil samples was determined
by dry combustion using a Leco Carbon Analyzer according to the recommended
protocol of the manufacturer (30). Briefly, soil samples were ground in a ball-mill
grinder to pass through a 100 mesh sieve. Calibration of the instrument was a two step
process that included compensation for the amount of argon in the oxygen cylinder (two
blanks containing the recommended amounts of tin and iron accelerators) followed by
high (0.9%) and low (0.05%) carbon standards (Leco Corp.). Calibration was repeated
until the recorded percent C- was within the confidence limits of the standards. After
calibration, soils samples (approximately 0.1g) and the tin and iron accelerators were
placed in a Leco crucible and total carbon was determined. The percent organic matter
was calculated from the total organic carbon measurement as follows:

Percent OM = (TOC)1/0.58).
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This conversion factor is derived from estimates of the percentage of carbon in humus
that range from 55-60% (27, 40). All measurements were performed at the Soil and Plant

Nutrient Laboratory at Michigan State University.

Viable counts. Viable counts were determined within 48 hours after collection.
One gram of soil (wet weight) was placed into 3 ml of sterile 100 mM phosphate buffer
(pH 7.4) and vortexed vigorously. The large soil particulates were allowed to settle for
one minute, after which the supernatant was serially diluted to extinction in sterile
phosphate buffer. R2A agar plates (DIFCO, Detroit, MI) were spread with 100 ul from
the serial dilution tubes and incubated at 25°C. Each dilution was plated in triplicate and
the plates were counted after seven days of incubation. The total viable count is
calculated as the average of three to six plates from the dilution tubes providing optimal

distribution of colonies.

Lipid analysis. All solvents used were of GC grade and were obtained from
Fisher Scientific (Pittsburgh, PA). All glassware used was washed in a 10% (v/v) Micro
cleaning solution (VWR Scientific, Pittsburgh, PA), rinsed 10 times in tap water then 10
times in deionized water. The glassware was then heated at 450°C for 4 hrs in a muffle
furnace prior to use. Lipids were extracted from samples (10 g wet weight) using the
modified Bligh and Dyer method as described in (50). The total lipids obtained were
then fractionated into glyco-, neutral- and polar-lipids (20). The polar lipid was subjected
to a sequential saponification/acid hydrolysis/esterification (36). The PLFA were
separated, quantified and identified by gas chromatography-mass spectrometry (GC-MS;

52). Fatty acids were identified by relative retention times, comparison with authentic
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standards (Matreya Inc., Pleasant Gap, PA) with identifications confirmed by the mass

spectra (collected at an electron energy of 70 mV) (44). Fatty acid nomenclature is in the
form of “A:BwoC’ where ‘A’ designates the total number of carbons, ‘B’ the number of
double bonds , and “C’ the distance of the closest unsaturation from the aliphatic end (w)
of the molecule. The suffixes ‘¢’ for cis and *t" for trans refer to geometric isomers. The
prefixes *i’ , ‘a’ and ‘me’ refer to iso and anteiso methyl branching, and mid chain methyl

branching, respectively, with cyclopropyl rings indicated by “cy™. (25).

Statistical analysis. Results were expressed per gram dry weight of the substrate.
Phospholipid fatty acids were analyzed both as pmole g soil and as mole percents.
Given the large number of samples, for ease of analysis Cr’” concentration (mg kg™') was
coded; 1 =0-99 (N =20),2=100-999 (N =15),3 =1 000-9 999 (N=14),4 =10 000 =
99 999 (N = 23), 5 =>>100 000 (N = 4). Analysis of variance (ANOVA) was used to
determine shifts in relative proportions of specific PLFA with Cr* concentration (coded).
Groupings for ANOVA were assigned a posteriori. The ANOVA and correlation
analyses between PLFA and Cr’" concentration were performed using Statistica Version
5.1 for Windows software (Statsoft Inc., Tulsa, OK). The same software was used for

exploratory statistical analysis by extraction of principal components.

Artificial Neural Net analysis. The ANN analysis was developed in MATLAB
5.3 (The Mathworks, Inc., Natick, MA) environment using feedforward topologies with
one hidden layer. The algorithms used are extensions to NetLab (9). The new code written
for this study incorporates cross-validation for optimization of topology, bootstrapping for

accurate evaluation of each topology attempted, and sensitivity analysis to quantify the
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contribution of each PLFA to the prediction of Cr*". The purpose of cross-validation is to
avoid over fitting by using the part of the experimental data that was not used to develop
and train the ANN as a validation set. This procedure can be repeated with different
validation sets in order to represent the entire data set, therefore bootstrapping each
topology evaluated (15). The ANN with the best median error is selected as the best
predictor. The ultimate goal of repeated cross-validation is to match the complexity of the
PLFA/ Cr’* association with an ANN solution of similar complexity (42). The
implementation of cross-validation and bootstrapping of neural networks is not usually
performed due to the associated intensive computing load (42). The ANN computations
reported here were performed using a dual-Pentium III 600 MHz computer with 500 Mb
RAM. The relative importance of each PLFA to predict the target values was calculated by
performing sensitivity analysis on the trained ANN. The procedure is briefly outlined
below for the general case of »i independent variables (PLFA) being used to predict iy
dependent parameters (nf = 1, Cr’* concentration). Due to the non-linearity of the ANN
solution, the overall sensitivity results from the combination of the sensitivities were
calculated for each experimental value (each individual PLFA of individual profile
obtained for every sample). Consequently, the sensitivity of an output parameter Qut;=; 2,

caused in Ouy; by variations introduced in /i; and is represented by the following equation:

NSye = (dOut;./d In,(In,/ Out,.)
SJ = {"E_:f".f.l Ao emd 3, L one {NSEJC,J J?"'Ill[zf-f._j. iy jml 2 i o=l 2 e fﬁEf;c) JII (Eq ]}

i=1, 2, ... ni; input index
1, 2, ... nj; output index
1, 2, ... nc; sample (case) index

c
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RESULTS

Chemical analyses. The concentration of Cr *" ranged between ~10 mg kg at
site BS to between 120 000 — 263 211 mg kg™ at H17. pH values at the different
sampling locations (in parenthesis) ranged between 5.2 (C8) to 8.0 (C16., L21). Calcium
content ranged between 350 (B9) - 13263 (H15) g g’ Potassium was present at
between 25 (P23) - 914 (J21) ug g’'); Magnesium was present at 74 (P23) - 4801 (E18)
Hg g‘l; and P at 1.0 (H15) - 109 (J21) pg g, Percent total carbon and organic matter
ranged between 0.34 - 43.0 % and 0.6-66.4 %, respectively and both showed a significant

positive correlation with Cr”” concentration (Table 1).

Biomass. Bacterial abundance was calculated based on the amount of bacterial
PLFA recovered at each site (6). As with any conversion factor, it is important to
remember that the number of cells can vary by up to an order of magnitude (16).
Bacterial abundance at this site as described by PLFA ranged from a minimum of ~6-7 x
107 bacteria to a maximum of ~1 x 107 in over 40 % of the remaining sites. In general,
viable cell counts were approximately 1-3 orders of magnitude lower than were the cell
numbers calculated from PLFA content (ranging between 3 X 10* cfu g™’ to 107 cfu g"].
The PLFA content showed no correlation with Cr*" concentration (P>0.05, Table 1; Fig.
2A). PLFA content did show a positive correlation with both percent total organic matter
(TOM; P<0.001) and total organic carbon (TOC; P<0.001) (Table 1). In contrast, viable
counts did not correlate with either TOC or TOM, although they showed a weak positive

correlation with PLFA (P=0.03).
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Community structure. Shifis in the PLFA profiles were detected for certain
PLFA with the increased Cr’* concentration. Only PLFA which demonstrated significant
shifts in relative proportion with Cr'* concentration are reported here and in Fig. 2.
Compared to samples with low Cr’~ concentrations, the relative proportions of terminally
branched chain fatty acids were significantly lower in samples containing >10,000 mg kg’
''Cr** (specifically 116:0, a17:0), and >100,000 mg kg™ Cr'* (specifically al5:0, i15:0,
i17:0) (Figure 2B). The relative proportion of 10me16:0 fatty acid, indicative of the
presence of sulfate reducing bacteria (14) increased in samples containing up to ~10° mg
kg Cr’*, before decreasing again with the increased Cr’" concentration (Figure 2C).
Furthermore 10mel8:0, a biomarker commonly used for detection of actinomycetes
(17,18, 33), decreased signiticantly over the Cr’” concentration range (Fig 2D). Finally,
samples containing >100,000 mg kg ™ Cr'" also contained significantly more normal

saturate PLFA which are common to all genera (51, 53; 2E).

Physiological status. Microorganisms lipid profiles are a product of their
metabolic pathways and therefore reflect the phenotypic response of the microorganism
to its environment (51). In these samples, the relative proportions of 18: 1w 7t (frany)

compared to that of 18:1w7¢ (cis) increased with increasing Cr*" concentration (Fig. 2F).

PCA, ANN. The ordination of PLFA profiles together with sample characteristics
by principal component analysis (PCA) revealed associations between Cr'" concentration
and specific PLFA (Fig. 3). The multi-linear regression of PLFA profiles to predict Cr’"

highlighted the fact that the correlation was not linear (R* = 0.80, results not shown). The
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association between PLFA profile and Cr’” concentration was further pursued using
artificial neural networks (ANN), an artificial intelligence technique. A predictive (cross-
validated) association was found for an ANN containing 11 hidden nodes (Fig. 4). The
relative sensitivity coefficients (Table 2) assigned to each of the elements of the
combined profile of PLFA and soil characteristics shows little association between the
Cr’* concentration and most relevant PLFA (highlighted in Fig. 3 and Table 2). This
finding was to be expected given the failure to identify a predictive multilinear
dependency. Therefore, the accuracy achieved by the ANN predictor was due to the
ability of this technique to uncover non-linear associations. It should also be noted that
the ANN made a distinction between TOM and TOC (Table 2). Such distinctions
between similar parameters often occur when two similar variables are used, one of
which is measured with more accuracy.

Table 2 shows the sensitivities of the different PLFA in the ANN prediction of
Cr** concentration, with 20% of the variables responsible for 50% of the predictive value
(shaded). Of these PLFA, only 10mel6:0 is commonly used as a specific marker for
sulfate/metal reducing bacteria (14; 45). Of the remaining PLFA in the list, i15:0,
16:1w11¢, and i17:0 all correlated strongly with 10me16:0 (at P<0.001). The PLFA
18:1m9c (the most sensitive) correlated strongly with 18:2w6 (indicative of
microeukaryote biomass). T-he PLFA 18:1®9c¢ is generally taken to be indicative of both

Gram-negative prokaryotes and microeukaryotes (31, 53).

12
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DISCUSSION

The lack of any correlation between total biomass (PLFA and/or viable counts)
and Cr** concentration is reflective of the relative lack of toxicity of the Cr’~ compared to
Cr**. However, from the shifts in the relative proportions of specitic PLFA with
increasing Cr’* concentration it was evident that the microbial community was impacted
by the contamination. Specifically, the increase in the relative proportion of 10mel6:0
fatty acid (most commonly associated with sulfate reducing (14) and iron reducing
bacteria e.g. Geobacteraceae (45), was associated with the median Cr'" concentration of
~10° mg kg”'. Above that concentration, however, the relative proportion of 10me16:0
decreased significantly, indicating a negative impact on sulfate/metal reducing bacteria
containing 10mel6:0. Terminally branched saturates have been associated with both
Gram-positives and anaerobic Gram negatives, (39, 53). In this case, the relative
proportions of a number of terminally branched saturate PLFA correlated strongly with
that of the 10mel6:0 (P<0.001), suggesting that these terminally branched PLFA were
generally indicative of anaerobic Gram-negatives sulfate/metal reducing bacteria.

Gram-negative bacteria make trans fatty acids as a response to changes in their
environment (47). An increase in the ratio of trans/cis fatty acids (specifically 16:107t/c
and 18:1w7t/c) has been suggested to be indicative of starvation (26), nutrient stress (33)
and/or metal toxicity (17). T;IOWEVET the trans/cis response to metal toxicity has tended to
be contradictory, with inconclusive evidence often presented (18). Herein a significant
increase in the proportion of 18:1w7t to 18:1w7¢ was detected when the e
concentration exceeded 10* mg kg™ (Fig 2F), however, this shift was not reflected in the

ratio of 16:1@7t/16:1@7¢ which stayed constant over the entire concentration range (data



i —

ot
aennng sitsee vt 25 semieal bogrosewiel oitaisned e o duid AT

o Dol iites, A S Rtk 200 T, il vditbina oil W sl il raiiae. aes  okha

k'S

‘i X -LI'_'l_.JFJ-l':'.-?f-.:-'m_ £t .ﬁtic&u;-'a-&wst?gﬁmi_;ummiz slane ygessntd S

Dosigs e mg ol | sl e oy shalive g8 1 uoiBERNGD N7 g it

D o d o g ERFITT = T il g gl St RGO bt

it bt e g i lein nit e e Bttt uiseis Sleleniming R ) Ly il

ERTINTATIE L O Mo gty T e R T R h A P
A st Seemsmogu iy seuclerits asdemad goiisstmburon fd inds L gagm 0!
s ant g ity Lot rilisc s il et & QR vl G RiraaE il i Lisecnl

s iy s amun s s an R OBy mmmlm* o b 2av e Ky TG

wr R batglar A stage: uadermo et ) dieun 8 10 sk
i oo SO0 Battssmd et bk e e Sl QRitisige: -U-.l'ﬁﬂ"'l-ﬂ,_!.:!}c‘?ll (7 EHEE I g e

Siiiaigid iRl R By LS A 1 sl ek esnan “,

e I el SR S PR R B TR BTN ffi{ﬁgﬁr:: it b
gt A1 e SHE SN Gl 96 Sotoilal (e

(Ehy reara Seobnin SOL i W s Hientbn: 20 o boirs - sase e mell 50T Uiy

DR UL SHENCEP T T TR I BTSSR LSSHE S e PR A G ST ¢ - B e

teuilipsil s nisaatl AR ESwdy wm W’ﬁb‘ﬂl&mm:ﬁ: it J|bsneLoh - o

T ee Lannclome e ebal enVe il il e nuiogon sty 1L ety

<t i44 Bespombiencangy soa ket asvvead 9 9if) ol ge 0! Bubosua nuor musing

mishy agmer soduiTmn: s S an - Tvs aienos binare fid v sTa b INTwEa: 7 ooy

~




=2

Laa

10

11

12

13

20

21

22

23

that it will not respond to values below the limit, set at approximately 100 mg kg (Fig.

4).

CONCLUSIONS

Increased levels of Cr’™ were correlated with the decrease in the PLFA
representative of sulfate/metal reducing bacteria, and the increase in relative proportions
of lipids indicative of metabolic stress. Microbial community composition, as revealed
by the PLFA characterization, was non-linearly associated with C " concentration.

The artificial neural network was shown to be a highly accurate predictor of
Cr’*concentration, largely outperforming the conventional linear regression techniques.
Furthermore, the ANN prediction was observed to depend mostly on the concentration of
PLFA components, highlighting the biological nature of the non-linear association with
Cr’" concentration. These results suggest that effective monitoring of both heavy metal
concentration and, conceivably, also of heavy metal immobilization activity, should be
based on the biochemical composition of the microbial cell membranes. This conclusion
can be rationalized by noting that it is the cell membrane that mediates interactions
between biological activity and environmental conditions. Therefore, PLFA signature

holds great potential as a biosensor for soil bioremediation.
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FIGURES
Figure 1: (A) Qualitative map image with sample locations; (B) map of Ers

contamination (mg kg™).

Figure 2: Box and whisker plots of the specific PLFA (mole percents) with different '
contamination. (A) Total PLFA; (B) Terminally branched saturates; (C) 10mel6:0; (D)
10me18:0; (E) normal saturates; (F) 18:107t/18:1o07c. The x axis is of Cr**
concentration (encoded, 1 = 0-99 (N =20), 2= 100-999 (N =15), 3 =1 000-9 999 (N =

14), 4 =10 000 = 99 999 (N = 23), 5 =>100 000 (N = 4)).

Il

Figure 3: A principal components analysis using all 57 PLFA variables as well as
selected soil characteristics (soil moisture (wetland), total biomass (PLFA and viable
counts) Ca, P, Mg, K, TOM, TOC, pH). Factors 1 and 2 provided 21 % and 14.9 % of the
variance, respectively. The highlighted PLFA correspond to the top parameters

accounting for 50% of ANN predictive sensitivity (Table2).

Figure 4: ANN predictive accuracy - valid for values above the lower threshold level of ~

100 mg kg™

Figure 5: Relative (bars) and cumulative (solid line) sensitivities of the optimized NN to
specific PLFA and chemical (Ca, P, Mg, K, TOM, TOC) and other selected parameters
(moisture content (wetland), total biomass (PLFA and viable counts)). PLFA are

arranged in order of their importance to the prediction of Cr'” concentration, with the top
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20 % of variables responsible for >50% of the predictive value (dotted lines). Table 2

shows the precise sensitivity values.
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TABLE 1. Correlation table for Cr’*, Biomass PLFA, viable counts, percent total organic
matter and % total carbon. Significant positive correlations are indicated by P values.

Cr’” (mg Biomass Viable counts % Total % Total
ke (PLFA) (cfug™) organic matter carbon
Cr" (mgkg') 1.0000 0.1055 B.1552 0.353 0.3863
P=0.407 P=0.221 P=0.004 P=0.002
Biomass 0.1055 1.0000 (.3498 0.4918 0.4945
(PLFA) P=0.407 P=0.005 P<0.001 P<(.001
Viable counts  0.1552 0.3498 1.0000 -0.0333 -0.0299
(cfugh P=0004  P=0.005 P=0.794 P=0.815
% Total 0.3532 0.4918 -0.0333 1.0000 0.9297
organic matter P=0.004 P<0.001 P=0.794 P<0.001
% Total 0.3863 0.4945 -0.0299 0.9297 1.0000
carbon P=0.002 P<0.001 P=02815 P=0.001
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TABLE 2. Sensitivity of ANN predictions of Cr'" concentration. Twenty percent of all

variables (highlighted) are responsible for 50% of the predictive value.

Variables Average Cumulative Variables Average Cumulative
Sensitivity Sensitivity Sensitivity  sensitivity

18:1@9c 6.6% 6.6% 18:2a 1.2% 84.5%
117:0 4.8% 11.4% br17:0a 1.0% 85.7%
18:la7c 4.6% 16.0% Biomass 1.1% 86.8%
10mel8:0 4.3% 20.3% 15:1 1.0% 87.8%
al7:0 4.1% 24.4% Phosphorus  1.0% 88.8%
il5:1m11c 4.0% 28.4% 15:1b 0.9% 89.7%
[15:1a 3.7% 35.7% Wetland 0.9% 90.6%
16:lm5ec  3.6% 35.6% brl15:0b 0.9% 91.5%
115:0 3.1% 38.8% cy19:0 0.8% 92.3%
20:1w9%  3.0% 41.9% Magnesium  0.7% 93.0%
16:1ollc 2.9% 44 8% i14:0 0.7% 93.7%
10mel6:0 2.5% 47.3% 18:0 0.7% 94.4%
Bri8:1 2.5% 49.8% 16:1w7c 0.7% 95.0%
al5:0 2.4% 52.2% 23:0 0.6% 95.7%
116:0 2.4% 54.6% br16:0 0.6% 96.3%
%TOM  2.4% 57.0% Potassium 0.4% 96.7%
16:0 2.3% 59.3% 11mel6:0 0.4% 97.1%
cyl7:0b  2.2% 61.6% 20:5w3 0.4% 97.5%
17:0 2.0% 63.6% 12mel8:0 0.3% 97.8%
15:0 2.0% 65.6% 20:0 0.3% 08.2%
20:3w6 1.9% 67.5% cyl7:0a 0.3% 08.5%
Calcium 1.8% 69.3% il5:1c 0.3% 08.8%
21:0 1.7% 71.0% 18:2w6 0.2% 99.0%
pH 1.7% 72.7% 14:0 0.2% 99.2%
12Zmel6:0 1.6% 74.3% 22:0 0.2% 99.3%
16:107t 1.5% 75.8% il6:1 0.2% 99.5%
18:3w3 1.4% 77.2% 16:2 0.1% 99.6%
%TOC 1.3% 78.5% 24:0 0.1% 99.8%
il7:1w8 1.3% 79.7% brl5:0c 0.1% 09.9%
br15:0b 1.3% B1.0% 20:4w6 0.1% 100%
br17:0b 1.2% 82.2% Viable counts 0.0% 100.0%
18: 107t 1.2% 83.4% 18:1m5¢ 0.0% 100.0%
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