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Abstract

The development of effective methods to monitor soil pollution levels is of critical importance
when deciding on the usage of contaminated lands. In addition, it is crucial to anticipate the effect
of accelerated microbial activity (by nutrient addition and/or inoculation) and the extent of natural
degradation to evaluate alternative management scenarios. It has been shown before, by these and
other authors, that both goals may be simultaneously attained by using physiological, biochemical,
or genetic typing of the whole microbial community. The application of microbial community
typing methods (MCT) requires the development of a centralised database relating contamination
levels to microbial community profiles. Once a critical amount of information is accumulated the
microbial typing method can be associated with the level of contamination and the rate of
remediation. Data digging methodologies based on neural networks (NN), an artificial intelligence
technigque, were successfully used to deconvolute the association. MCT methods, namely carbon
source usage, signature lipid biomarker (PLFA), and PCR amplification followed DGGE are
compared and their interpretation by NN is described. Some MCT are very cost effective and only
require basic training to be implemented. Other MCT are amenable to automation and can be
applied to samples stored and shipped to a central location.

Introduction

Monitoring microbial mediated processes in complex matrices, such as bioremediation in soil,
faces two particular challenges. First, natural Microbial communities are very partially accessible
as less than 1% of soil bacteria detected by direct count are culturable (Skinner et al. 1952,
Bakken 1985). Second, nutrient cycles are implemented by fluid associations of different
organisms defining an entangled web of interdependencies. As a consequence, process dynamics
in ecosystems are hard to predict and manipulate on the basis of mechanistic models (Pahl-Wostl
1995). An additional element of complexity is the persistence of spatial heterogeneity, even when
the physical characteristics of the site suggest a homogeneous soil compartment (Di Gregorio
1997, Hastings 1994).



specific component of the system being monitored. The target component may be a class of
biochemical compounds, the genetic identity of dominant populations, or the functional
capabilities of the overall community. Since that partial information is going to be used to portrait
the overall system, it is crucial that it may be as representative as possible.

The analysis of phospholipid fatty acids (PLFA) is a balanced biochemical profiling technique that
accesses the overall microbial community composition (White 1996). The technique calls for
extraction of lipophilic components (Macnaughton 1997) followed by Gas Chromatography with
the subsequent identification of individual PLFA by having Mass Spectrometry in line. It has been
demonstrated that the pattern of PLFAs contains information about community microbial identity,
functional capabilitics and physiological status (Almeida 95). This conclusion is also justified by
the fact that PLFAs are the major component of cellular membranes. Although, several other
MCT targeting biochemical composition have been applied to soil samples (e.g. Quinones,
diglycerides and PHA content) PLFA are arguably the most popular choice, with a resolution as
high as ~ 10 femtomoles (White 1996).

The method of choice to profile microbial community identity consists of PCR amplification of
rDNA fragments followed by denaturating gel gradient electrophoresis (DGGE; Kowalchuck
1997, Stephen 1998). The isolated DGGE bands can be sequenced and compared to a database of
previously characterised sequences. This technique allows the phylogenetic identification of the
dominant species present. Allernative techniques include probing for selected genes or RNA
sequences (White 1997, Kawaharasaki 1998) and the analysis of restriction fragment length
polymorphism (RFLP; Liu 1998). Recent advances in the development of gene chips are
augmenting the potentialities of genetic profiling techniques to include functional analysis, which
is achieved by targeting mRNA fragments recovered from soil samples (Voordouw 1998).

A large variety of methodologies for functional profiling for MCT exist that have been developed
as an extension of the classical microbiology techniques for classification of pure culture isolates
(Logan 1994). The use of substrate utilisation patterns in particular became very widespread, in
part due to the convenience of commercial substrate utilisation galleries (e.g. BIOLOG™ , API-
Biomericux) . Although its usefulness as a research tool has been questioned (Smalla 1998), if
properly used they provide a reproductive and cost effective fingerprint technique easily applied
to soil and compost samples (Garland 1996).

Finally, a large amount of information available by simple observation of the field site is often
overlooked and fails to be recorded in databases. Although not part of a MCT proper, the field
worker is often aware of valuable correlation between environmental and process parameters
ranging from the presence of indicator species to the soil/compost material appearance
(texture/colour/odour). The subjective nature of this information has precluded its inclusion in
statistical correllations. However, artificial learning techniques are not hampered by the same
limitations and can use implicit information to produce reliable predictions as will be discussed
below.

Test selection

The selection of carbon sources to use, DGGE bands to sequence, genes to probe or the required
resolution for the PLFA profiling, has to be made such that sample discrimination is maximised.
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defines information of a set of measures as the number of different states resolved. The
determination of information content is appropriate for profiles of binary tests such as galleries of
substrate utilisation. However, for a broader utilisation of the concept, entropy (S) will be used
instead (eq.1); N is the number of observed test outcomes, and pi is the corresponding frequency.

N
S ==Y pi-log,(pi) (N

Parameter selection is an iterative process that proceeds until the required discrimination between
samples is reached. The optimal combination for a given number of tests or parameters does not
necessarily include the optimal subsets obtained for a smaller number of parameters. This is due to
the non-linear nature of the dependency, which requires the use of regression algorithms capable
of handling surfaces with multiple local minima. Genetic algorithms have been shown to be
particularly effective for this purpose (Davis 1991, for a comprehensive overview). We have used
this iterative optimisation procedure not only to select the most discriminant tests defining a MCT
but also to optimise the test itself, e.g. to determine the optimal incubation time of a substrate
utilisation test. In figure 1 the use of entropy calculations is exemplified to evaluate the selection
of 3 out of possible 4 tests (T1,2,3,4) by their capacity to discriminate two samples (A,B). The
four possible solutions can be codified as binary vectors, e.g. Solution 2 comprises tests T1,2 and
4 (Fig.1b, Sol.2). The binary vectors are handled by genetic algorithms that search for the solution
with the highest entropy (Fig.1lc, Sol.3 and 4).
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Figure 1 - Example of utilisation of entropy measurement to select 3 out of 4 possible binary tests
to discriminate two categories, A and B. a) experimental test results; b) possible solutions
expressed as a binary vector (“genetic” sequence format used by the genetic algorithm): ¢)

Calculation of entropy levels associated with each solution (eq.1): the optimal combination of 3
test typing is shown to be T3IANDTSAND(TIORT2) = Sol. 3 or Sol 4.

MCT interpretation

The information encoded in the MCT has to be classified according to associated process
parameters of interest, i.e. extent of contamination, rate of bioremediation (Fig.2). As outlined in
the introductory section, the association is non-linear and the underlying mechanism is usually
poorly understood. Therefore, instead of aiming at proving explicit associations between
parameters, statistical analysis will have to be preceded by the development of predictors capable
of using information implicit in the experimental record.
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Figure 2 - Rationale for the use microbial composition typing (MCT) as a probing method.
Process parameters are inferred from MCT by using artificial neural networks (NN).

Neural networks (NN) are an artificial intelligence technique that emulate the process of natural
learning (“learning from experience”, Hinton 1992). NN consist of a layered assembly of
interconnected neurons, mimicking the biological counterpart. Each neuron is a processing unit
that performs weighted sum of all inputs, x, and transfers the output, y, to the next layer. The
transfer function is typically a sigmoidal curve. The matricial formulation for a layer of neurons is
presented in equation 2, where x is the vector of n inputs, y is a vector of m outputs produced by
m neurons; w is the mxn weight matrix; and wo is a vector of n scalars,

y=f(wo+w-x) , fla)= %+ o (2)

The learning process consists ol simultaneously presenting 1o the NN typing profiles (e.g. Fig.1a)
and classification vectors (e.g. Fig.1.c). The layer of neurons processing the typing profiles is the
input layer; the layer whose outputs are compared with the classification vector is the output
layer; the intermediate layers are known as hidden layers. The conventional learning algorithm
backpropagates the classification errors to the values of the weight matrix and bias vector, a
procedure akin to reinforced learning. For practical applications, other regression algorithms are
often preferred (Haykin 1994 for a comprehensive reference on NN).

Three different NN architectures that have been used to interpret MCT profiles are hereby
reviewed: standard feedforward, non-linear mapping and auto-associative. 1) Feedforward NN
associate the MCT profile with the classification vector as described in Figure 3. The number of
hidden nodes is allowed to change freely during the learning process. Feedforward NN of this
type can theoretically emulate any transfer function, as suggested by the Komogorov theorem
(Bishop 1995). In order to guarantee the generalisation of the NN solution, part of the
experimental data is exclude from the learning process, and is used for validation. The
appropriated number of hidden nodes (Fig. 3) and the extent of error backpropagation is
determined by comparing the learning and validation errors (cross-validation, Masters 1995).

classification  Figure 3 - Schematic architecture of a three
vector layer Feedforward network to associate MCT

profiles with classification vectors. Symbols
hidden layer correspond to neurons (ea. 1).




equally feasible to train several networks to extract different types of information from the same
MCT profile, e.g. using PLFA profiles to infer both physiological status and identity (Almeida
1995, Pfiffner 1998)

2} Non-lincar mapping uses a feed-forward NN with three hidden layers where the middle layer is
constrained to the dimensions of the map (usually 2D, Fig. 4). A MCT profile analysed by this
method is assigned to a position in the map that has unique properties with regard to the
classification vector. As a consequence, a non-linear map classifies MCT profiles and also sorts
process parameters according to their joint occurrence (Almeida 1998). In that report we have
described application of non-linear mapping handling 6 parameters simultaneously: process time,
contamination, inoculation with defined culture and the presence of three selected genes for
degradation of hydrocarbon compounds in soil.
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Figure 5 - Simulation of time course of soil hydrocarbon contamination levels by using the non-
linear map reported in (Almeida et. al 1998). The two horizontal axis are the coordinates
computed by the middle neurons (Fig.4); the vertical axis is the inverted time scale; the color-scale
represents the contamination level. Time course of an individual sample can be inferred by
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The non-linear map developed was used to obtain the simulated contamination levels plotted in
Figure 5. The vertical axis is an inverted time scale covering a period of 2 weeks. The colour-
scale represents the hydrocarbon contamination level, from 100% (contaminated) to ) (not
contaminated). A soil sample whose microbial community had been typed by this MCT method
and analysed by the non-linear NN mapping technique described will be assigned a position in the
map. That position not only tells what is the contamination level but also suggests what is the
future process course, which can be obtained by following the path with the steepest slope.
Therefore, non-linear mapping of MCT profiles is as much a monitoring as a modelling tool.
Another utilisation of NN hidden nodes to infer process course from MCT profiles was reported
by Noble et al., 1997 where the pattern of hidden node outputs is subjected to cluster analysis.

The two achitechtures presented above were used to associate typing profile with process
parameters. However, the relevant process parameter may not be available or may have been
unreliably determined. The third architecture, 3) autoassociative NN, uses the vectors of MCT
profiles as both primary input and final output (Fig. 6). The procedure is conceptually similar to
dimensionality reduction by principal component analysis, except that the components are curves
with a flexible shape instead of lines (Bishop 1995). The ordination of PLFA profiles by this
method represents a higher proportion of experimental variance than does principal component
analysis.

non-linear factor
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Although the literature reports on analysis of MCT profiles mostly by standard multivariate
slatistical methods, neural networks have clear advantages. The recent statistical literature reflects
this new awareness by increasingly reporting on neural computing techniques for cluster analysis,
factor analysis and discriminant analysis (Cheng 1994).

Database management and integration

In order to optimise the analysis of MCT data, it is of critical importance to store all available data
in a central relational database. Only then can the NN methods presented above, be used to
explore the interdependencies that may be implicit in the experimental record. In addition, having
a relational database as a central data repository enables the combination of multiple MCT
techniques to develop a committee (Fig.7). Committee classifiers are particularly effective when
the member classifiers have specialised competencies (Bishop 1995).



Figure 7 — Example of a
combination of multiple MCT
methods for a comprehensive
description of microbial
mediated nitrogen cycling
(compare with Fig.1). A single
relational database is regularly
updated with field data, and
concomitantly, constant
calibration of neural network
responses takes place.

Using MCT methods to monitor environmental processes mediated by microbes is often part of a
broader management framework. Taking into account local heterogeneity and global
dependencies brings forth the development of geographic information systems (GIS). The new
context extends the role of microbial community typing (MCT) methods as a source of data for
calibration of remote sensors (Fig. 8).

Figure 8 — Rationalization of

. I i using MCT methods (shaded
! half circle) for calibration of
s Ea _ Field work  cmote sensing within the
| context of geographic
- - information systems (GIS).
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