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of Microbial Communities in Soil
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DAVID C. WHITE University of Ténnessee and Oak Ridge National
Laboratory, Knoxville, Tennessee

I. PROBLEMS IN ASSAYING MICROORGANISMS
IN SOILS

The determination of microbial biomass and the activity of microor-
ganisms in soil presents a complex analytical problem for assays. Nu-
merous studies have demonstrated that classic methods, which re-
quire the isolation and subsequent culture of microorganisms, are
not adequate for enumerating microorganisms in soil. Viable counts
underestimate the microbial community when compared with direct
count techniques [1—3] or with estimates of muramic acid in the
prokaryotic cell wall [4]. This discrepancy has been attributed to
the selective growth of microbes on artificial media, the formation of
a single colony from bacterial aggregates, and the difficulty of quan-
titative removal of organisms from soil particles [4,5]. Direct count-
ing methods are also subject to technical difficulties when applied
to soil systems [5]. For example, cells may be hidden in soil parti-
cles or overlapping organisms, particularly in agpregates of organ-
isms attached to particles, and the conversion from counts to biomass,
by estimating volumes of the microorganisms, can result in large er-
rors.

Furthermore, classic methods provide a limited insight into the-
metabolic function and activity of the microorganisms in soil. Specific
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fluorescent dyes (e.g., fluorescein diacetate) [6,7] have been
used to determine the metabolically active cells of microorganisms
in soils. Active cells can also be determined by a combination of
autoradiography and microscopy [8,9]. However, this methodology
requires enzymatic activity in the presence of substrates and is
subject to the limitations associated with the density of organisms
and the thickness of the biofilm in the field of view. Moreover,
when substrates are introduced to measure metabolic activity, the
process of introduction can induce artificially high levels of activ-
ity, with a possible disturbance artifact.

The problems associated with the use of viable counts and mi-
croscopic examination to estimate biomass of microorganisms in soil
have stimulated research on the development of new methods. One
approach is to estimate the biomass of soil microorganisms by mea-
suring the concentration of specific biochemical components of the
microbial cells [5,10—12]. Components that are generally present
in all cells are utilized as a measure of biomass, the components
that are restricted to subsets of the microbial community are util-
ized to define the community structure. The validity of the con-
cept of "signatures" for subsets of the microbial community, which
is based on the limited distribution of specific components, has
been shown for several groups of microorganisms [10-12]. Biochem-
ical methods have also been utilized to indicate the nutritional status
of microorganisms in natural environments, and the metabolic activ-
ity of the microbial community can be estimated by measuring the
rate of isotope incorporation from labeled precursors [10—12].

The biochemical methods do not have the problems associated with
the classic methods because they do not depend on growth, with
the inherent problem of microbial selection, nor do they require
removing cells from surfaces. Biochemical methods examine the
community as a whole with the structure of the consortia left in-
tact. In contrast with the chloroform fumigation methods, the bio-
chemieal methods give information on biomass and community struc-
ture, as well as on the metabolic activity of the microflora.

{I. BIOCHEMICAL METHODS FOR
BIOMASS MEASUREMENTS

When determining biomass by measuring the concentration of a cellu-
lar component, several requirements must be fulfilled [5,10-13]):
(1) the measured component must only oecur in living microorgan-
isms and not exist in dead cells nor in nenliving parts of the soil
organic matter; (2) it must be possible to quantitatively extract and
analyze the component in soil samples with appropriate sensitivities;
and (3) the component should exist in fairly uniform concentrations
in the cell. Several cellular components have been used for biomass
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measurements in soils. These components include adenosine triphos-
phate (ATP), microbial membrane components, and constituents of
microbial cell walls (Table 1).

Some skepticism exists among several microbiologists concerning
estimation of biomass of soil microorganisms by measuring specific
cellular constituents. They assume that no cellular components ful-
fill the foregoing criteria [5,14}. Despite these admonitions, many
papers have been published surveying the developments and appli-
cations of bicchemical methods for assaying the biomass of soil mi-
croorganisms. The results of these studies are summarized below.

A, ATP

The rapid metabolism of ATP in living cells, as well as ifs quantifi-
cation by the very sensitive luciferin—luciferase assay, have led to
the widespread use of ATP analysis as a biochemical tool of biomass
determination in soil [5]. The uses of ATP and other nucleotide
analyses in microbial ecology have been extensively reviewed by
Karl [15], and we will only briefly discuss the application of this
method to soil systems.

Table 1 Biochemical Components Used as Signatures for Estimating
Biomass of Microorganisms in Soil

Component? Organisms Ref.
ATP All cells 16,17,20—25,28,
32-35
Membrane components
Phospholipids All cells 45,51,52,67,68,129,
130,135,145—-148
LPS Gram-negative bactieria 51,52,62,67,68
Ergosterol Fungi 79,80
Cell wall compoenents
Muramic acid Bacteria 4,52,91
D-alanine Bacteria 92
DAP Gram-negative bacteria 79,80,90,92—-95
Glucosamine Fungi 89,90,106-108,113—
117

2LPS, lipopolysaccharides; DAP, diaminopimelic acid.
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Extracellular ATP has been reported to rapidly decompose in soils
116,17]1. However, several studies of aquatic systems have demon-
strated the presence of freely dissolved ATP {15], and growth
studies of Escherichia ¢oli have shown that, during the death
phase, viable counts decreased more rapidly than the concentra-
tion of ATP. This observation suggests that a sizable portion of
the total ATP content originates from dead cells [18,19].

A major problem of ATP measurements in soil is the variability
of extraction efficiency [5,20]. Several methods have been used,
including cold H,80, [17,21-25], trichloroacetic acid with paraquat
and phosphate [17,20]1, but none of these is entirely efficient for
extracting ATP from all soil types. Losses during the extractions
can be accounted for by using a recovery standard of authentic
ATP {15].

The most common procedure for measuring ATP in environmental
samples utilizes a luciferin—luciferase system, which has a sensi-
tivity of sbout 10~ "* mol of ATP [26]. It has been calculated that
this sensitivity corresponds to the ATP content of approximately
103 bacterial cells by assuming an ATP content of 4.0 nmol mg™*
dry weight [15] and an average dry weight of soil bacteria of 6.4
% 101! cells g~ ' dry weight [27]. The light emission from the en-
zymatic reaction can be measured with a spectrophotometer, a lig-
uid scintillation counter, or a special photometer designed for ATP
measurements. The reaction can be inhibited by various ions and
other components in the extracted sample [28]. Procedures have
been developed for eliminating ionic interference by sorption of the
ATP to charcoal [29] or ion-exchange columns [21], followed by
elution of the ATP for assay. However, hydrolysis of ATP can
occur as a result of adsorption to charcoal [30]. Moreover, the
enzyme must be purified to prevent reactivity with nonadenosine
nucleotides [15]. These and other problems with the luciferin—
luciferase method for measuring ATP content in environmental sam-
ples led Davis and White [31] to develop a high-performance ligquid
chromatography (HPLC) procedure for the isolation of ATP, which
also made it possible to analyze several other adenine-containing
components, including adenine, adenosine, AMP, cyclic-AMP, ADP,
and NAD.

The concentrations of ATP in microbes vary, depending on the
species, growth rate, and media composition. Karl [15] compiled
data of ATP content in various exponentially grown microorganisms
and found that the range of ATP was 0.5 to 18 nmol mg™’ dry
weight. Furthermore, the ATP content varies with the concentra-
tions of several nutrients. For example, growth under phosphate
deficiency decreased the cellular content of ATP by more than 80%,
compared with cultures grown with adequate phosphate [15,21,32].
The ATP content of microorganisms in soil increases after the ad-
dition of glucose to soil [32,33].
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To establish a factor for the conversion of ATP content to biomass,
the ATP concentrations in various microorganisms grown in vitro
were determined. The mean values obtfained from these measurements
were then used as conversion factors for the soil microbiota [5].
Using such conversion factors, biomass measurements estimated from
ATP contents in various soils showed relatively good agreement with
other biomass measurements that are based on the chloroform fumiga~
tion—inecubation method and direct counts [5,33—35]. Several stipu-
lations have to be made for this to be a valid comparison; for example,
all ATP has to be in the biomass, and the values of the carbon con-
tent of the biomass, as well as the conversion factors used in the
fumigation and direct count methods, have to be defined.

B. Phospholipids

Measurements of the content of phospholipids (PL) have been used
to estimate the biomass of the microorganisms, especiaily in aguatic
sediments, but also in soil systems [10,11] (see Table 1)}. Phos-
pholipids are found in the membranes of all living cells, but not in
the storage products of microorganisms [36]. Phospholipids are ac-
tively metabolized during the growth of bacterial monocultures [37],
and they have a relatively rapid turnover in dead bacteria added
to aguatic sediments [38). Similar studies have not been performed.
in soil systems, although the results from a study on the degrada-
tion of labeled phosphatidylcholine in soils suggested a rapid turn-
over of microbial phospholipids in soils [39].

Our laboratories have developed a suite of methods to analyze
phospholipids and other lipid biomarkers of microbial biomass, as
well as the community composition and nutritional activity of micro-
organisms in environmental samples [10,11,40]. These methods are
based on an efficient one-phase chloroform:methanol:buffer extrac-
tion system, modified from Bligh and Dyer [41,42] (Fig. 1). The
one-phase solvent system is then divided into two phases, with the
addition of one portion of chloroform and one portion of buffer.
The lipids are recovered in the organic phase. The agueous phase
can be used for the analysis of ATP, and the residue from the lipid
extraction can be used for analysis of microbial cell wall sighatures.
The extracted lipids are separated on silicic acid columns into three
fractions that contain neutral lipids, glycolipids, and phospholipids
[42]. With this procedure, the phospholipids of E. coli cells, when
added to sediments, were quantitatively recovered [38,43]. No
such studies have been performed in soils.

The extraction procedure of Bligh and Dyer [41,42] has been
compared with other methods for efficiency in extracting lipid-sol-
uble phosphorus from soils {44]. Somewhat higher amounts of or-
ganic phosphorus were recovered with an acid pretreatment, fol-
lowed by a hexane—acetone extraction or by a series of organic
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solvents different from those used with the modified Bligh and Dyer
However, more experiments need to be performed to estab-
lish the most relisble and accurate method for extracting phospho-
lipids from microorganisms in soil.
Phospholipid in the polar lipid fraction from the silicic acid col-
umn is readily measured, after perchloric acid digestion, by colori-

methed.

metric analysis to a sensitivity of 107° mol [38].

detection of about 10° bacteria that are the size of E. coli.
successive hydrolysis with hydrochloric acid and hydrofluoric acid
(HF) and the use of gas chromatography (GC) to assay glycerol in-

creased the sensitivity for glycerol to 107! mol [45].

This enables the
The

The sensitiv-

ity of the phospholipid analysis can be significantly improved by
analyzing the esterified fatty acids by capillary GC {46] (see Bect.

1I1.A).

The content of phospholipids in microorganisms varies among

different taxa [36.47,48].

Kates [36] showed that the phospholipid

content of various bacteria varied between 4 and 81 mg g'1 dry
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weight. Furthermore, studies of monocultures have shown that the
concentration and composifion of phospholipids are affected by
growth conditions, such as the temperature, pH, and the nutrient
composition of the medium [49]. However, other experiments have
shown that when bacteria are grown under conditions in a natural
habitat, the cells contain a relatively constant proportion of their
biomass as phospholipids [43,50].

Mean values of phospholipid content in various monocultures have
been used to convert phospholipid measures fo microbial numbers
and biomasss [e.g., 45,51,52]. The equivalence of microbial bio-
mass measurements using phospholipid analysis, microscopic counts,
ATP measurements, and several other chemical methods have been
demonstrated in subsurface aquifer sediments (Table 2) [52]. These
environments contained a sparse microflora of relatively uniform coc-
coid bacteria, which made the community ideal for comparing chem-

.

ical measures and microscopic estimates of biomass.

c.’ Lipopeolysaccharides

The outer cell membrane of gram-negative bacteria contain unique
lipopolysaccharide (LPS) polymers comsisting of a lipid (lipid A),

a core polysaccharide, and an O-specific side chain [53]. Analysis
of LPS has been used to estimate the biomass of gram-negative bac-
teria in soils and sediments (see Table 1) [54,58]. Studies have
shown that LPS of dead bacteria are rapidly lost from sediments
[54]1. The decomposition rate of LPS in soils has not beéen ex-
amined.

The most common method used fo analyze LPS in environmental
samples is based on the limulus amebocyte lysate (LAL) test [59,
60]. In this test, an agueous extract from the blood cells of the
horseshoe crab (Limulus polyphemus) reacts specifically with LPS
to form a turbid solution, with the amount of gelation being pro-
portional to the LPS concentration. The LAL test is rapid and sen-
sitive, with a detection limit of about 0.4 pg of LPS [60]. There
are, however, several problems associated with use of this method
for the quantitative analysis of LPS in samples as complex as soil,
The LPS has to be quantitatively extracted from the sample, and
two extraction procedures have been used: hot phenol-water [62]
and trichloroacetic acid [54]. Only about 10% of the LPS in heat-
killed E. coli cells was recovered from soils when phenol extraction
was used [62]. Furthermore, the specificity of the LAL test is
controversial, as there are several reports of substances, other
than LPS, causing gelation [e.g., 61,64]. It has also been shown
that LPS from various bacterial strains can differ in their ability
to gel the lysate {66].
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The problems associated with the LAL assay can be circumvented
by the analysis of specific signature components in LPS. B8-Hydroxy-
myristic acid (HMA) in lipid A and ketodeoxyoctanoate (KDO) in the
core region of LP§ are two such signatures. Analysis of HMA has
been. used to determine the LPS content in several soil studies [51,
67,681, B-Hydroxymyristic acid can be analyzed by acid hydroly-
sis of the residue from the Bligh and Dyer extraction (see Fig. 1),
followed by reextraction with fresh solvent, purification by thin-
layer chromatography (TLC), and then separation by capillary GC
[58}. This procedure yielded four to ten times more hydroxy acids
than the amounts recovered in trichloroacetic acid or hot-phenol—
water extracted LPS in samples of marine sediments [58]. The sen-
sitivities of this method are approximately 107'? mol using a flame
ionization detector (FID)}, and 107°° mol using electron-capture de-
tection (ECD), which corresponds to 107 or 10% E. coli cells [58].

The sensitivities of the assays can be significently improved by the
use of special derivatives and mass spectrometric detection [69-T1].
Ketodeoxyoctancate can be analyzed by GC [34,72], but this method
has been applied only in studies of gram-negative bacteria in es-
tuarine sediments [54].

Some variation in the content and composition of LPS in bacterial
monocultures has been demonstrated, depending on the taxa, tem-
perature, and composition of the growth medium [53,73,74]. The
lipid A part appears to be subject to less variation than the sugar
parts of LPS. When conversion factors calculated from studies with
bacterial monocultures were used, estimates of microbial biomass
based on the content of lipid A hydroxy fatty acids showed good
agreement with estimates based on direct counts and contents of
ATP, phospholipid, and muramic acid in subsurface soils (see

Table 2}.

D. Ergosterol

Ergostercl (ergosta-5,7,22-trien-33-ol) is the predominant sterol in
most fungi [75]. Analysis of ergosterol has provided a rapid and
sensitive method for the quantification of fungal invasions of plant
material [76,78], and the method has been introduced by West and
Grant for estimating fungal biomass in soil [79,80]1. Although the
turnover rate of ergosterol in fungl in soils has not been deter-
mined, it can be assumed that ergosterol, as a membrane compo-
nent, is degraded at a rate similar to that of fungal eytoplasm in
soil, & rate that is considerably faster than that of microbial cell
walls in the same environment [81].

Ergosterol can be recovered from soils by extraction with meth-
anol, saponification, and reextraction with hexane [79]. The er-
gosterol is then analyzed by HPLC using a UV detector, taking
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advantage of the characteristic UV absorption of ergosterol at 282
nm, which differs significantly from the maximum adsorption of
other plant and animal sterols [76]. The sensitivity of this method
is approximately 18 ng ergosterol per gram of dry soil, calculated
by using values of the ergosterol content in fungi of approximately
2 ug fungal dry weight per gram of soil dry weight. The physical
losses in the extraction procedure for ergosterol in soil, estimated
by adding [**Clergosterol, were less than 8% [79]. Ergosterol
can also be extracted with the Bligh and Dyer mixture, purified
with silicic acid chromatography, recovered from the neutral lipid
fraction, and analyzed by capillary GC [83] (see Fig. 1).

The ergosterol content of fungal mycelium varies, depending on
species and growth conditions [48,75,76]. For example, Seitz et al,
[76] reported a range in ergosterol content between 2.3 and 5.2
mg g“l dry weight from the analysis of three fungal species grown
for varicus times and under different conditions. West et al. [80]
demonstrated a high linear correlation between ergosterol content
and fungal surface area in stored, air-dried., and substrate-amended
grassland and arable soils. Furthermore, the ergosterol/biomass C
ratios (estimated by microscopy) for these soils resembled ratios de-
termined in vitro in pure cultures of fungi [80,82,84). These data
indicate that the ergosterol detected in these soils was associated
with Hving mycelia.

E. Muramic Acid, D-Alanine, and Diaminopimelic Acid

The peptidoglycan (PG) of the bacterial cell wall contains several
unigue compenents that are not found in other organisms. These
unigue components have been used as signatures for bacterial bio-
mass in soils (see Table 1). The PG molecule consists of glycan
chains of alternating units of N-acetylglucosamine and N-acetyl-
muramic acid (MuAc). The individual chains are interconnected by
short peptide bridges containing specific amino acids, including D-
alanine and m-diaminopimelic acid (DAP) [85]. MuAc and D-alanine
are present in the PG from all bacteria, whereas DAP is present in
all gram-negative bacteria, but only in some gram-positive bac-
teria [857.
. At least parts of bacterial cell walls are resistant to degradation
in soils [80,81,86,87]. The half-life of microbial material synthe-
sized from labeled precurscrs was calculated to be approximately 6
months in soil [86]1, and the cell walls are more resistant to degra-
dation than is the cytoplasma [§1]. The decomposition rate of bac-
terial cell walls in soil is probably the result of their stabilization
by complexing with humid acid polymers [88,80].

Components of the bacterial cell wall are recovered from soil after
hydrolysis with strong HCl (4,79,91-94}) (see Fig. 1). They are
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then purified by cation-exchange chromatography [4,96,97]. Mu-
ramic acid has been quantified in these soil hydrolysates by anal-
ysis of the lactate released from the molecule by subsequent alka-
line hydrolysis [4]. The average recovery of MuAc from soils ana-
lyzed by this method was 79% [4]. A more sensitive method is to
form a derivative and then analyze MuAc by GC [91,96-99] or by
HPLC [100]. The sensitivity of these methods is about 107!! mol
of MuAe, which corresponds to about 10° bacteria with a size com-
parable with that of E. coli. The detection limit of the GC analy-
sis can be substantially improved by forming special derivatives
and using electron capture devices (ECD) or mass spectrometers
(MS) detection systems [96].

Grant and West [79] developed a simplified procedure for the
analysis of DAP in soil samples, They combined the purification
and analysis steps by using paper chromatography. The recovery
of DAP added to soil using this method was, on average, 80%.

The analysis of D-alanine requires special methods to separate
the opfical isomers of alanine. Two such GC methods have been
developed. In one technique, D- and L-alanine were separated on
a GC column coated with an optically active stationary phase [96].
In the other method, the enantiomers were separated on an optically
inactive column by forming diastereoisomeric derivatives of D- and
L-alanine [101].

The contents of PG components in bacterial monocultures do not
vary greatly with growth rate or medium composition [102]. How-
ever, the concentration of MuAc in gram-positive and gram-negative
bacteria and cyanobacteria are different. Millar and Casida [4]
analyzed the MuAec content of several bacterial isolates from soil
and reported an average of 19.4 mg MuAc per gram of biomass C
for gram-positive bacteria and 7.2 mg MuAc per gram of biomass C
for gram-negative bacteria. Similar values were obtained by
Moriarty for some marine and terrestrial bacteria [103].

Millar and Casida [4], from their values for the MuAc content in
bacteria, estimated that the MuAc levels in soil were about 100- to
1000-fold higher than could be accounted for by the number of or-
ganisms found on plate counts of the examined soils. This dis-
crepancy, in part, might be because only a fraction of the total
bacterial population is recovered in plate counts. However, the
higher than explainable levels of MuAc could also have resultad
from. dead bacterial cells and organic material [4]. West et al. [80]
reported that the DAP/biomass C ratios in soils (0.32 to 2.55) were
more than 100 times higher than those obtained with bacteria grown
individually in pure culture, and they suggested a large proportion
of the DAP in their soils was also present in nonliving organic mat-
ter [87,93]. Manipulations of the soil biomass by storage, air-
drying, and glucose-amendment showed, however, that changes in
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the DAP content and in the populations of bacteria determined by
plating were closely related [80]. Studies in subsurface soils have
demonstrated an equivalence in biomass estimations between measure-
ments based on MuAc content, other chemical measures, and micro-
scopic counts (see Table 2).

F. Chitin and Glucosamine

Chitin, a polymer of N-acetylglucosamine, is a major component of
fungal cell walls [104]. Glucosamine is not unique to chitin, but
occurs in the bacterial cell wall and in the exoskeleton of inverte-
brates [105]. Analysis of glucosamine has been used to measure
mycelial biomass in wood and leaf litter [106—108], in plants in-
fected by pathogens or myeorrhizal fungi [108—117], and to esti-
mate the biomass of fungi in soil [79,80]. As with bacterial cell
wall components, there are data that indicate the presence of
glucosamine in nounliving organic material, and experiments have
demonstrated a relatively slow degradation of fungal cell wall ma-
terial in soils [90,98,100,122].

Glucosamine has been recovered from soil samples by strong acid
(HC1) hydrolysis, followed by purification by cation-exchange chro-
matography [108—108]. The hexosamine has been quantified by
colorimetric assays [106—108,119], or it can be a derivative formed
and analyzed by GC with a sensitivity of about 3 x 10~ '' mol [91—
98]. The GC methods also analyze MuAc in the sample. Alterna-
tively, glucosamine has been determined in soil hydrolysates by
paper chromatography, which is a rapid and simple method that
omits the cation-exchange step [79].

The chitin end glucosamine contents of fungi vary over a wide
range, depending on species, growth conditions, and age. Aaron-
son [120] reported that the concentration of chitin ranged between
10 and 250 mg g~ ' dry weight in various fungal species. The range
of plucosamine in three species of salt marsh fungi measured at dif-
ferent ages was 8.5 to 92.8 mg g~! dry weight [121]. In general,
the chitin content increased with the age of the mycelium, an ob-
gservation that has been made in other studies [122,123]. The
chitin content in Ciriolus versicolor, which was used in Swift's
earlier work [106], was 2.4 mg g ' dry weight when grown in
wood, but 12.4 mg g~ ' dry weight when grown in vive.

Another problem that occurs when using glucosamine analysis
to estimate fungal biomass is that the contribution of glucosamine
from invertebrates and bacteria must be eliminated or accounted
for. Glucosamine from prokaryotes can be accounted for by mea-
suring the amount of MuAc in the sample, and assuming an MuAc/
glucosamine molar ratio of 1:1 [85]. However, the main problem
of the glucosamine method is, as for the MuAc and DAP analyses,
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the presence of glucosamine in nonliving organic material, West

et al. [80] found that the glucosamine/biomass C ratio was about
100 times above the values reported from the analysis of fungal cul-
tures. i

HI. ANALYSIS OF COMMUNITY COMPOSITION

Analysis of lipid composition is an important tool for taxonomic and
phylogenetic classification of microorganisms, particularly of pro-
karyotes [48,124,125]. Many lipid compounds are relatively easily
extracted and analyzed in environmental samples. Hence, Hpids are
the most often used signature components for determining the com-
munity composition of microorganisms in ecological studies [126—128].

A. Phospholipid Fatty Acids

The ester-linked fatty acids in the phospholipids are currently the
most sensitive and the most useful chemical measures of microbial
community structure [128]. Analyses of monocultures and consortia
of microorganisms isolated from the environment have shown that
subsets of a microbial community can be identified by specific "sig-
nature" phospholipid fatty acids (PLFA; Table 3)., For example,
bacteria characteristically contain odd-chain, methyl-branched (e.g.,
iso- and anteiso-branched), and cyclopropane fatty acids [36,49,
126~130]. Fungi, on the other hand, typically synthesize satu-
rated even-chained and polyenoic fatty acids [48,123]., Many ac-
tinomycetes contain methyl-branched tuberculostearic acid (10 Me
18:0) [131]. Signature PLFA have also been identified for methane-
oxidizing bacteria [132], sulfate-reducing bacteria [133,134], the
soil bacterium, Flavobacterium balustinum [135], and for Franci-
scella tulerensis {136]. By utilizing fatty acid patterns of bacterial
monoculiures, Myron Sasser of the University of Delaware, in co-
operation with Hewlett Packard, has been able to distinguish over
8008 strains of bacteria [137].

Techniques to Analyze Phospholipid Fatty Acids

Phospholipids are extracted and purified from scils using the Bligh

and Dyer extraction procedure and silicic acid chromatography, as

described in Section II.C (see Fig. 1}. The ester-linked fatty acids
are then transesterified to methyl esters by mild alkaline methanoly-
sis, and the fatty acid methyl esters (FAME) are analyzed by capil-
lary GC using FID [128,135,138]. Environmental samples, including
soils, usually contain a2 very complex mixture of PLFA; for example,
30 to 50 different fatty acids can be identified in scils and sediments.
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Table 3 Examples of Signature Phosphelipid Fatty Acids®
for Microorganisms

Eubacteria
Common signatures: i15:0, al5:0, 15:0, 16:1w3, i17:0, 17:0,
18:1w7

Sulfate veducer: 10Me 16:0, BriT:1, 17:1wé

Methane-oxidizing bacteria, type 1: 16:1w8c, 16:1w8t, 16:1wsc
type 2: 18:1w8c, 18:1wst, 18:1wéce

Flavobacterium balustinum: i17:1w7, Br 20H-15:0
Francisella tularensis: 24:1lwbc, 22:1w13c, 20:1wllc
Actinomycetes: 10Mel8:0

Fungi: 18:2wé6, 18:3w6

aFgtty acids are designated as total number of carbon atoms: num-
ber of double bonds, with the position closest to the aliphatic {(w)
end indicated and using c¢ for cis and f for trans. The prefixes
m,n Mg v oand "Br" refer to iso, anteiso, and (ms) methyl-branch-
ing in uncenfirmed positions. Cyclopropyl fatty acids are indi-
cated with the prefix "cy."

Source: From Refs. 126-136.

A long (50-m x 0.2-mm id) fused silica column, coated with a cross-
linked nonpolar stationary phase has a satis{actory separation effi-
ciency and is stable and reproducible for long-term analysis of en-
vironmental samples [139]. However, for special applications, such
as determining cis- and trans-isomers in complex mixtures of fatty
acids, columns with more polar stationary phases are needed [140].
The GC retention times give valuable information on the structure
of the FAME. However, MS is needed for verification of the chem-
jcal structures. Methyl esters of fatty acids have electron impact
(EI) mass spectra which, in most cases, give information on the
presence of methyl branches, hydroxy groups, unsaturations, and
cyclopropyl groups [141,142]. Special technigues are needed to
determine the configurations and localizations of double bonds and
the positions of cyclopropyl rings [143,144]. :

The sensitivity of these analyses is at the picomolar level, which
corresponds to the content of PLFA in 5 x 10° baecterial cells, such as
E. coli. Some applications require a substantially higher sensitivity
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of PLFA analysis than the GC-FID procedure. Introduction of new
mass spectrometric methods have made such analyses possible [40].
One method, called selective ion monitoring (8IM), uses the MS in-
strument as a highly sensitive and specific detector by measuring
only preselected ions that are specific for the analyte. By form-
ing special derivatives and using chemical ionization techniques
with negative ion detection, SIM has sensitivities to a few femto-
moles (107 '°) of fatty acids [69],

The SIM techniques have been used for analyzing PLFA profiles
of microorganisms in deep subsurface sediments. When analyzing
these samples, it became obvious that special care and techniques
have to be used to avoid introducing fatty acid contaminants dur-
ing the handling and preparation of the samples [146]. The con-
tent of PLFA in these samples, was about 6 pmol g™' dry weight,
Which corresponds to 10° to 10° bacterial cells for each gram of
dry weight. The application of SIM techniques for the analyses of
bacterial signature components have been described in more detail

f40].

Applications to Soil Systems

In soil systems, analysis of PLFA has been used to study the dy-
namics of bacteria associated with the roots of repe plants [146]
and to characterize bacteria that suppress damping-off caused by
Rhizocionia [135]. The method has also been utilized to examine
the biomass and structure of microbial communities in subsurface
soils, including soils contaminated with organic pollutants [67,68,
129,130,147,148]. For example, analysis of PLFA demonstrated
that degradation of trichloroethylene (TCE) was correlated with
the presence of type Il methane-oxidizing bacteria [51].

Potential problems with defining microbial community structure
by analysis of PLFA could result from a shift in fatty acid compo-
sition of some monocultures with changes in temperature and media
composition [58]. However, there have been no studies that show
that such shifts in PLFA composition substantially changed the in-
terpretation of the community structure during natural growth con-
ditions.

Despite that the analysis of PLFA eannot provide an exact de-
termination of such species or physiological type of microorganism
in a given environment, the analyses provide a quantitative descrip-
tion of the overall microbiota in the particular environment sampled.
By use of statistical analysis, it is possible to obtain an estimate
by PLFA analysis of the differences among various samples and
treatments [128].
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B. Lipopolysaccharides, Ether Lipids,
Sphingolipids and Quinones

Analysia of lipid components other than PLFA can provide further
insight into the composition of the microbial communities. The
composition of hydroxy acids in LPS varies among different groups
of gram-negative bacteria [53], and this composition has been used
for classifying clinical bacteria and for indicating community compo-
sition in marine sediments [57]. This analysis has not been tested
in soils. :

Archaebacteria are characterized by their unique biphytanyl and
di-biphytanyl glycerol ether lipids which are not found in other or-
ganisms [152]. These lipids have been used as biomarkers for ar-
chaebacteria in sediments, hot spring mats, and fermenters [153—
155]. Phytanyl glycerol ether lipids can be analyzed by HPLC af-
ter appropriate derivatization [156,157], or by supercritical fluid
chromatography [158].

The oceurrence of plasmalogens (mono-alk-1l-enyl monoacyl glye-
erophosphatides) in microbes is restricted to specific groups of
anaerobic bacteria [150,151]. Plasmalogens can be assayed by their
resistance to mild alkaline methanolysis and extreme sensitivity to
mild acid [38].

Analysis of respiratory quinones has been used as a sensitive
biomarker of aecrobic versus anserobic metabolism in environmental
samples [159]. The redox potential of the respiratory quinones
sugpests that the terminal electron acceptor of those bacteria con-
taining ubiquinones (benzoquinones) should be of higher potential
when scompared with those of bacteria containing naphthogquinones.
Bacteria capable of forming both types of respiratory quinones form
ubiquinones when grown aercbically and naphthoquinones when
grown anaerobically [160]. Aerobes contain benzoquinones, and
gsome, but not all anaerobes, contain naphthoquinones [161,162].
Hedrick and White [160] analyzed the respiratory quinones from
the neutral fraction of the silicic acid-purified lipid extracts (see
Fig. 1) with HPLC using electrochemical detection. Manipulation
of sediments between aerobic and anaerobic conditions shifted the
naphthoguinones/benzoquinones ratio from 0.03 for the aerated con-
sortia to 3.0 for the fermenters, as expected from studies with
monocultures,

IV. NUTRITIONAL STATUS

Microoranisms in soil are subjected to the stress of fluxes in nu-
trients, which may take the form of either the partial or near-complete
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absence of nutrients [163,164]. Such fluctuations may lead to a
transition from balanced to either unbalanced or complete cessation
of growth. Unbalanced growth in microorganisms is commonly as-
sociated with the accumulation of energy-reserve polymers [1651.
Numerous studies have shown that the synthesis of such polymers
is induced when the nitrogen, oxygen, phosphorus, potassium, or
sulfur supply (depending on the organism) becomes limiting in the
presence of an excess of the carbon source [165]. Chemical meth-
ods have been utilized to indicate unbalanced growth conditions by
measuring the ratio of lipid storage polymers to cellular biomass
[166—169].

Microeukaryotes, such as protozoa and fungi, use triglycerides
as storage polymers, and the nutritional status of these organisms
has been monitored by measuring the triacylglycerols/phospholipid
glycerols ratio [166].

Some bacteria form the endogenous lipid storage polymer, poly-
B-hydroxybutyrate (PHB), under unbalanced growth conditions
[1651. Detailed analyses of PHB extracted from bacterial isolates
and environmental samples have shown that this polymer can be a
mixture of polymers containing a number of various short-chain
fatty acids [167]. This "mixed" polymer of PHB was called poly-
B-hydroxvalkanoate (PHA) [1871.

The PHB-PHA polymer has been extracted from enwronmental
samples with boiling chloroform and sodium hypochlorite [167—1707,
Findlay and White [171], however, demonstrated that PHB can be
quantitatively extracted by using the modified Bligh and Dyer lipid
extraction method (see Fig. 1). The extracted PHB is further puri-
fied by silicic acid chromatography, hydrolyzed, derivatized, and
analyzed by GC. The detection limit of this assay using a FID .de-
tector is 100 x 107'° mol of PHB. The sensitivity of this analysis
can be significantly improved by using special derivatives and MS
detection [172].

PHB analyses, in combination with lipid biomass measurements,
have been used in soil systems, for example, to examine the nu-
tritional status of bacteria associated with plant roots [146], to com-
pare the nutritional status of bacteria in uncontaminated and con-
taminated subsurface soils [67,68], and to monitor bacteria degrading
halogenated hydrocsrbons in methane-enriched soil columns [172].

Starvation of some bacteria induces the formation of minicells.
An examination of PLFA profiles from starved marine bacteria has
shown that there is a marked inerease in the proportion of PLFA
with double bonds in the trans configuration during the formation
of such minicells induced by nutrient deprivation [174]. It has
been sugpested that the nutritional status of some bacteria can be
monitored by measuring the ratio of cis/trans-PLFA [174].
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V. METABOLIC ACTIVITY

The analyses of the biochemical signatures described in the fore-
going involve the isolation of the biological components from micro-
bial communities. Inasmuch as each of the components are isolated,
the incorporation of labeled isotopes from precursors can be util-
ized to provide rates of synthesis or turmover.

Measurements of the rates of DNA synthesis with [*H]thymidine
provides an estimate of the rates of heterotrophic bacterial growth.
When short incubation times are utilized, isotope dilution experi-
ments can be used to estimate precursor concentrations, and DNA
can be purified [175] as long as the thymidine is not catabolized
significantly. This method was first applied to soil systems by
Thomas et al. [176]. The basic assumptions underlying this method
were recently examined in greater detail [177]. Soil DNA was eX-
tracted and separated from other macromolecules, such as proteins,
which contained a significant amount of labeling, by using an acid—
base hydrolysis method. The recovery of added ['*CIDNA was 58%
in humus soil and 75% in sandy loam soil. Isotope dilution experi-
ments were utilized to estimate the pool of exogenous thymidine;
the uptake of added [*H]thymidine was linear with time for 60 min
[177]. The thymidine method has also been utilized to estimate the
growth rates of bacteria in the rhizosphere [178] and in subsur-
face solls [179-181]1. In estuarine sediments, thymidine was shown
to be rapidly catabolized, with ['* Clearbon dioxide appearing 10
min after exposure to [** Clthymidine [182]. This finding sug-
gests that thymidine catabolism couid complicate the accuracy of
using thymidine incorporation to estimate bacterial growth in seils.

The incorporation rates of H #*PO, and [¥ Clacetate into PL have
been utilized to measure the activity of the total microbiota [183].
The contribution of the microeukaryotic portion to PL synthesis has
been estimated by measuring synthesis in the presence of cyclo-
heximide [184]. Incorporation of ['* Clacetate has been utilized to
examine the synthetic activity of subsurface soils and sediments
{180,181]. The technique enables measurements of microbial activ-
ities that span more than five orders of magnitude.

Labeling experiments with [** Clacetate have also been used to
measure the formation rate of PHB and PLFA [185]. This. ratio was
shown to be a sensitive measure of the nutritional status of the bac-
terial habitat, and the technigue made it possible to measure the
"disturbance artifaet" involved in the application of labeled precur-
sors in the environment [185].

Mass spectrographic analysis enables the use of precursors la-
beled with stable isotopes to study the rate of synthesis of biochem-
ical signature compounds in microbial communities. Stable isotopes
are superior to radioactive isotopes in that stable isotopes have
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higher specific activities, include isotope markers for nitrogen, and
can be efficiently detected using SIM techniques with the MS. The
high specific activity enables the assay of critical reactions at sub-
strate concentrations that are similar to the levels present in nat-
ural environments. Methods have been developed to measure '°N
incorporation into D-alanine in bacterial cell walls and to determine
3¢ environment in PLFA [1886,187],

Vi. CONCLUSION

Chemical measures for the biomass, structure, nutritional status,
and metabolic activity of microbial communities, based on the ansl-
yses of specific cell components, represent a gquantitative and sen-
sitive method for the assay of microorganisms in soils. Several
studies have demonstrated that membrane lipids, such as phospho-
lipids and ergosterol, are particularly useful as signatures for bio-
mass. They are comparatively easy to extract, they have a rapid
turnover, and estimates of biomass based on their content corres-
ponds well with classic methods. The analysis of the ester-linked
fatty acids in the phospholipids enables the detection of specific
subgets of the microbicta. With this technique, shifts in the struc-
ture of the microbial community can be quantitatively assayed. Rates
of formation of membrane lipids and turnover of endogenous storage
polymers, such as PHB, provide insights into the nutritional status
and metabolic activities of the community. The validation of these
techniques has been reviewed [11]. Further applications of these
techniques will provide both insights into the ecology of microor-
ganisms in soil as well as further validations of the methods.
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