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ABSTRACT

The effect of molybdate ion on the corrosion of mild steel in an aerobic medium
containing a Pseudomonas biofilm and sulfate reducing bacteria has been investigaled. Changes
in specimen open circuit potentials correlated with changes in microbial activities. Formation
of a microbial film by Pseudomonas on the metal surface could be characterized by changes of
phase angle at the lowest frequency; and molybdate functioned as a corrosion inhibitor in the
presence of sulfate reducing bacteria.

INTRODUCTION

Microbiologically influenced corrosion (MIC) is recognized as a problem in number of
environmental and industrial settings (1-3). In aquatic environments, microorganisms can
colonize to metals and form biofilms causing localized changes in pH, oxygen gradients and
inhibitor levels at the metal surface. These changes may alter the electrochemical behavior of
the metal and induce localized corrosion (4).

The role of sulfate-reducing bacteria (SRB) in the corrosion of metals has long been
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noticed. A comprehensive review of SRB (5) in MIC indicated that SRB generally cause a
pitting corrosion of mild steel characterized by the presence of black iron sulfide corrosion
products. In the abscnce of oxygen, SRB use sulfate as the terminal electron acceptor for their
respiratory metabolism, thereby producing significant amounts of sulfide. This sulfide will
depolarize the anode and precipitate iron sulfide. The consumption of hydrogen will depolarize
the cathode and drive the corrosion reaction (6). Hamilton (7) suggested that the deposition of
iron sulfide might offer an increased surface area for the formation and subsequent oxidation of
cathodic hydrogen. Therefore, SRB interacting with the iron sulfide and enhancing pitting
corrosion is apparent.

Molybdaite based corrosion inhibitors have been the materials of choice in a wide range
of applications including cooling water systems. Previous studies (8-10) suggested that the
formation of ferrous and/or ferric molybdates on the steel surface at passive potentials accounted
for the inhibitive effect of molybdate. Ogura et al (11) also proposed that molybdate enhanced
the pitting resistance with increasing the concentration, which was attributed to the
polymolybdate’s ability to adsorb or precipitate as a salt. However, there is no investigation of
molybdate as a corrosion inhibitor in solutions containing SRB. In the present study,
electrochemical techniques associated with viable bacteria cell counts were employed to
characterized the efficacy of molybdate as a corrosion inhibitor in the presence of SRB,

EXPERIMENTAL PROCEDURE

Specimens. The test specimens (ATST C1020 carbon steel), 16 mm diameter disks, were
supplied by Mectal Samples (Munford, Alabama). The specified composition of this steel was
0.17C, 0.42 Mn, 0.09 P, and 0.006 S, wt%. A multi-electrode probe (12) was fabricated to
simplify experimental design by combining four stee! disks into one probe as illustrated in Figure
1.~ The surfaces were wet polished in sequence with 240, 400 and 600 grit SiC paper,
ultrasonically cleancd with distilled water, degreased with acetone and sterilized with 70%
alcohol for 30 minutes.

Electrochemical Cell. A sterilizable, flow-through electrochemical cell, as shown in
Figure 2, consisted of a 600 ml glass beaker which included 1) a four sided working electrode
probe, 2) a Pt coated Nb mesh counter electrode, 3) a saturated calomel reference electrode, 4)
a 0.2 pm sterile filter ventilation port, 5) a magnetically driven, Teflon-coated stir bar and 6)
test solution inlet and outlet. The electrolyte was simulated to cooling water with conductivity
of 3.5E-04 Siemens and contained (in g/l) NH,NO; 0.05, Na,SO, 0.12, KH,PO, 0.038, K,HPO,
0.124, FeCl, 0.33 mt of a 10 mM solution, Hutner’s salt solution 1.0 mi, MgCl,'6H,0 0.154
and NaCl 0.073. Total organic carbon content of the electrolyte was controlled at about 0.35
g/l by adding sodium lactate 0.8 and sodium succinate 0.5 g/l. Electrolyte pH was adjusted to
7.2 with NaOH. During the test period the solution temperature ranged from 23 to 25 °C. A
dual- channel peristaltic pump was used to control flow rate through the cell at 60+5 ml/nr.

Bacteria. Two organisms were used: Pseudomonas fluorescens (lux), hereafter referred
to as SRL, and Desulfovibrio gigas. SRL was selected on the basis of its ability to bioluminesce
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when induced, and its adhesive characteristics in liquid culture (13). D. gigas is an anaerobic,
dissimilatory sulfate-reducer. Sterile enrichment medium for D. gigas was prepared using
sulfate-API broth (American Petroleum Institute), containing (in g/1): bacto yeast extract 1.0,
ascorbic acid 0.1, sodium lactate 5.2, MgSO, 0.2, K,HPO, 0.01, Fe(NH,)SO, 0.1 and NaCl 10.

Test Procedure. Prior to the start of each experiment the electrochemical cell was
sterilized with ethylene oxide using the precautions defined previously (14). All lines to and
from the cell were autoclaved to achieve sterility. The electrolyte was also autoclaved at 121
°C for 4 hours, and allowed to cool with air equilibration by a 0.2 um filter vent. Experiments
involving the addition of 0.025 g/l molybdate ions were achieved by adding filter sterilized
sodium molybdate solution after the electrolyte was cooled. Inocula of 5 ml! of SRL and D.
gigas from culture cells into the electrochemical cells were added at specimen exposure times
of 0 and 96 hours, respectively. Upon termination of an experiment, viable bacteria cell counts
from bulk solution and specimen surface were determined by acridine orange direct counts
(AQDC) after fixation in 2.5% glutaraldehyde (15). In addition, viable plate counts (16) were
used to enumerate Pseudomonas on YEPG plates with tetracycline, and the most probable
number’s technique (MPN) (17) was employed to estimated the total number of D. gigas.

Electrochemical Analyses. Open circuit potential (OCP) of test specimens was monitored
at an interval of I hour by a HP 3458A multimeter via a Keithley 706 scanner controlled by a
computer.  Electrochemical impedance spectroscopy (EIS) analysis was performed by a
microcomputer using the Zplot software (Scribner Associates Inc.), a Solartron 1255 HF
frequency response analyzer, and a potentiostat/ galvanostat 273 (option 92) from EG & G
Princeton Applied Research. The applied voltage amplitude was 5 mV at frequencies between
5 mHz and 10 KHz, Five frequencies were examined per decade. An Etec Autoscan Scanning
Electron Microscope (SEM) was used to identify the pitting formation.

RESULTS AND DISCUSSION

Molybdate. Preliminary experiments were performed to study the inhibiting effects of
molybdate in sterile solutions. Four-sided electrode probes were placed in a sterile electrolyte
and a 0.025 g/l sterilized molybdate solution, respectively. Figure 3 presents the resuits of open
circuit potential (OCP) (mV vs. SCE) versus time plot for these specimens up to 240 hours, In
the sterile control solution a steady decrease in OCP was observed after 50 hours of exposure,
while in the molybdate solution, a slight increase in OCP followed by a relatively constant value
was obtained. Subsequent examination of the specimens indicated that the pitting formation had
occurred on the specimens which immersed in the sterile control solution. Apparently molybdate
inhibits the aqueous corrosion of steel in sterile conditions.

- The average corrosion rate in terms of the corrosion current density, i, can be
determined from the polarization resistance R, as defined by the Stern-Geary equation (18).
Values of R, measured by electrochemical impedance spectroscopy (EIS) for specimens in the
sterile solutions are shown in Figure 4, which reveals that this parameter behaves in a similar
manner for each of the OCPs investigated. It is generally recognized that molybdate enhances
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the pitting resistance, which is attributed to polymolybdate’s ability to adsorb or precipitate as
a salt (11). Restricted geometries of pits provides the limited mass transport conditions to
prevent the diffusion of molybdate ions into the bulk solution (9). Thus, inhibition from the
formation of protective layer by molybdate may act as a physical barrier to slow the metal
dissolution process.

JRL and D, gigas. Pseudomonas has been frequently cited as a typical genus of slime
forming bacteria (19). Therefore, in the present study an anaerobic environment was created
by the addition of 5RL in the solution to investigate the influence of sulfate reducing bacteria
(SRB} upon metal corrosion. A four-sided electrode probe was immersed in the solution which
contained 5RL initially; but an inoculum of 5 mi SRB enrichment medium into the solution was
also added after 96 hours of exposure. A comparison of OCP versus time plots for specimens
in the presence and absence of bacteria is given in Figure 5. In the presence of 5RL, a rapid
potential drop occurred after about 30 hours of exposure and maintained at -750 mV (SCE) for
10 hours, followed by an abrupt increase in potential toward -300 mV (SCE) and kept increasing
steadily until SRB medium was inoculated. At 96 hours, the addition of SRB enrichment
medium resulted in changes of solution chemistry so that a transient perturbation in potential was
observed. However, a gradual decline in potential from approximately -300 mV to -500 mV
(SCE) was apparent throughout the rest of the experiment,

It is generally recognized that localized corrosion occurs when environmental effects
induce heterogeneities on the metal surface. The physical presence of microbial cells on the
surface, in addition to their metabolic activities, modifies electrochemical processes. Adsorbed
cells grow, reproduce and form colonies that are physical anomolies on a metal surface, resulting
in local anodes and cathodes. Under aerobic conditions, areas under respiring colonies become
anodic and surrounding areas become cathodic (20). Therefore, it is clear that the colonization
of SRL to the metal surface, followed by nucleation of localized attack caused a sudden drop in
OCP (Figure 5), and subsequent potentials at about -750 mV (SCE) may indicate the propagation
of local attacks. However, a mature biofilm could prevent the diffusion of corrosive species
such as oxygen to the metal surface thereby reducing the metal corrosion (20). Pederson (21)
has shown that the effect of Pseudomonas on metals can be dominated by protective factors
under certain conditions. Hence, a relatively sharp increase in OCP (Figure 5) could imply a
mature biofilm formation. Changes in the OCP in the presence of SRB could be related to
changes in the localized corrosion activity. It has been proposed (6) that as the SRB metabolize
organic compounds and sulfate, sulfide is produced. This sulfide will depolarize the anode and
precipitate iron sulfide. The consumption of hydrogen will depolarize the cathode and drive the
corrosion reaction.

Figure 6 presents the R, versus time curves for specimens exposed to SRL+SRB and
sterile control solutions. These data suggest that although 5RL induced corrosion, formation of
a 5RL biofilm might reduce the corrosion rate. In other words the SRL biofilm may serve as
a physical barrier to prevent the diffusion of oxygen to cathodic sites and the diffusion of
aggressive anions, such as chloride, to anodic sites, However, under anaerobic conditions, the
fact that SRB remove atomic hydrogen accumulated at the cathode and force iron to dissolve at
the anode results in a increase in corrosion rate. Figure 7 shows the phase angle versus time
plot at the lowest frequency (5 mHz) from EIS analysis. In the case of SRL+SRB a steady
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increase in phase angle at 5 mHz was observed, which could indicate the formation of biofilm
by 5RL. This was confirmed by viable counts, which showed 8.7E+07 5RL and 1.0E+05 SRB
present on the specimen surface. It has been reported (22) that phase angle indicates whether
one or more times constants occur and can be used to determine the capacitances of the intact
coating layer. Dowling et al (23) also proposed that indications of local inhomogeneities in the
biofilm formation will be pronounced as the sweep f{requency decreases. Therefore, it is
apparent that EIS techniques are helpful to interpret metal-electrolyte systems involving
microbial films,

SRB and Molybdate. To investigate the effects of molybdate upon SRB an electrode
probe was exposed to a SRL+SRB solution for 192 hours, followed by continuous addition of
0.025 g/l molybdate medium for time up to 280 hours. Figure 8 presents the open circuit
potential versus time plot for specimens in the solutions with and without molybdate. In both
cases OCP was consistent during SRL exposure. However, the addition of SRB resulted in
different responses of OCP (Figure 8). A possible explanation could be that SRB modified the
biofilm produced by 5RL so as to affect SRB colonization rates, since established biofilms
provide prerequisite anaerobic habitat for SRB metabolic activity and growth, In other words,
SRB could change the nature of the overall corrosion mechanisin and thus change the OCP.
Nevertheless, a return of the OCP to levels near those of an uncorroded metal was observed
(Figure 8) after addition of molybdate. It could be reasoned that molybdate rapidly depleted
adenosine triphosphate (ATP) pools in sulfate-respiring bacteria, thereby blocking the formation
of adenosine-5’-phosphosulfate (APS) and thus causing death (24). Viable counts support this
hypothesis, since no SRB were observed on the specimen surface after addition of molybdate.

Corrosion rate, in terms of R, versus time plot is given in Figure 9, suggesting that
molybdate serves as a corrosion inhibitor in the presence of SRB. Figure 10 reports the phase
angle versus time plot for specimens in solution with and without addition of molybdate. It
seems to confirm that addition of molybdate results in a reduction of SRB, and SRL biofilm can
form. Moreover, it has been held that SRB are often characterized by localized activity and
results in pitting corrosion. The effect of molybdate on the localized corrosion is to enhance
pitting resistance by formation of an insoluble molybdate compound (10). Kodama and Ambrose
(8) have shown that molybdate ion would inhibit propagation of pits but not their initiation.
Nevertheless, at pH < 6 polymerization of molybdate ions results in consumption of hydrogen
ions (25); hence, if pits are induced by SRB, these reactions may retard hydrogen atom
formation in order to reduce a metabolic energy source for SRB. Therefore, it is clear that pits
induced by SRB could be inhibited by addition of molybdate.

Visual and SEM Observations. Figures 11-13 present photographs of specimens exposed
in sterile control, SRL+SRB, and SRL+SRB+Mo solutions. In all cases, pilting corrosion was
observed after 280 hours of exposure. Figures 14-15 show micrographs for bacteria formed in
SRL+SRB and SRL+SRB+ Mo solutions, respectively. This is consistent with the viable count
data which demonstrated higher bacteria densities in the 5RL+SRB solution than in the
5RL+SRB-+Mo solution.
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CONCLUSIONS

1. Molybdate inhibits the aqueous corrosion of mild steel in sterile conditions.

2. Changes in specimen open circuit potentials correlated with changes in microbial
activities.

3. Formation of a microbial film by 5RL on the metal surface could be characterized by
changes of phase angle at the lowest frequency measured by electrochemical impedance
spectroscopy.

4, Molybdate functioned as a corrosion inhibitor in the presence of sulfate reducing
bacteria.
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Figure 11. Specimen was exposed to the sterile ~ Figure 12. Specimen was exposed to the SRL+SRB
. solution for time up to 280 hours. - solution for time up to 280 hours,

Figure 13. Specimen was exposed to the SRL.+SRB+Mo
solution for time up to 280 hours.
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Figure I4. SEM micrograph of a specimen in
the SRL.+SRB solution without
addition of molybdate. Sample
exposure time is 280 hours.
Magnification X4000.
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Figure 15. SEM micrograph of a specimen in
the SRL+SRB solution with
addition of molybdate. Sample
exposure time is 280 hours.
Magnification X5000,



